

Lecture Notes in Computer Science 5234
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Vikram Adve
María Jesús Garzarán
Paul Petersen (Eds.)

Languages and
Compilers for
Parallel Computing

20th International Workshop, LCPC 2007
Urbana, IL, USA, October 11-13, 2007
Revised Selected Papers

13

Volume Editors

Vikram Adve
María Jesús Garzarán
University of Illinois at Urbana-Champaign
Department of Computer Science
Thomas M. Siebel Center for Computer Science
201 N. Goodwin Ave, Urbana, IL, 61801, USA
E-mail: {vadve,garzaran}@cs.uiuc.edu

Paul Petersen
Intel Corporation
1906 Fox Drive, Champaign, IL, 61820, USA
E-mail: paul.petersen@intel.com

Library of Congress Control Number: 2008932585

CR Subject Classification (1998): D.1.3, C.2.4, D.4.2, H.3.4, D.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-85260-3 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-85260-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12455096 06/3180 5 4 3 2 1 0

Preface

It is our pleasure to present the papers from the 20th International Workshop
on Languages and Compilers for Parallel Computing! For the past 19 years, this
workshop has been one of the primary venues for presenting and learning about
a wide range of current research in parallel computing. We believe that tradition
has continued in this, the 20th year of the workshop.

This year, we received 49 paper submissions from 10 countries. About a
quarter of the papers (12 out of 49) included authors from industry. We selected
23 papers to be presented at the workshop, for an acceptance rate of 47%, which
was similar to that of the last two years. Each paper received at least three
reviews, with about two-thirds of the papers getting four or more reviews each.
Most papers also received at least one review from an external reviewer. The
committee held a full-day teleconference to discuss the reviews and select papers.
Program Committee members who had a conflict with a paper left the call when
that paper was being discussed. There were seven submissions that included
Program Committee members as co-authors. These papers were evaluated more
stringently and four of seven were accepted.

The workshop this year also included two exciting special events. First, David
Kirk, Chief Scientist of nVidia and a member of the National Academy of Engi-
neering, gave a keynote talk on using highly multithreaded graphics processors for
accelerating general-purpose parallel computing applications. Kirk and nVidia
have led the drive to make the high parallelism in graphics processors more eas-
ily accessible for a wide range of applications beyond traditional graphics process-
ing, and this talk gave LCPC attendees a valuable perspective on the potential of
this work.

Second, a special panel was held on Friday morning to commemorate the
20th year of LCPC. This panel, organized and moderated by Steering Committee
Chair David Padua, was scheduled for an entire session to allow seven leaders
in parallel computing to give their perspective on how the field has evolved over
the past 20 years, and what the major challenges are for the future. The panel
included a number of luminaries in parallel computing – Arvind (MIT), David
Kuck (Intel), Monica Lam (Stanford University), Alexandru Nicolau (University
of California Irvine), Keshav Pingali (University of Texas, Austin), Burton Smith
(Microsoft Research), and Michael Wolfe (The Portland Group). Our thanks to
David Padua for organizing this panel.

We would like to thank the many people who contributed valuable time and
effort to making LCPC 2007 a success. Most importantly, we want to thank all the
members of the community who submitted papers to the workshop.This workshop
is, in the end, an (incomplete) representation of the results of their hard work.
Second, the Program Committee worked hard to review 12–13 papers each and
to participate in the all-day Program Committee teleconference. The quality of

VI Preface

the technical program owes much to their effort. In his role as Steering Committee
Chair, David Padua provided valuable guidance and support. He also lent his stack
of 19 previous LCPC proceedings to mark the occasion!

Finally, Sheila Clark put in tremendous effort behind the scenes to manage
many organizational details for the workshop and we would not have been able
to pull it off without all her help.

October 2007 Vikram Adve
Maŕıa Jesús Garzarán

Paul Petersen

Organization

LCPC 2007 was organized by the Steering and Program Committees.

General/Program Co-chairs

Vikram Adve University of Illinois at Urbana-Champaign
Maŕıa Jesús Garzarán University of Illinois at Urbana-Champaign
Paul Petersen Intel Corporation

Program Committee

Vikram Adve University of Illinois at Urbana-Champaign
Gheorghe Almási IBM Research
José Nelson Amaral University of Alberta, Canada
Eduard Ayguadé Universitat Politécnica de Catalunya, Spain
Gerald Baumgartner Louisiana State University
Cǎlin Caşcaval IBM Research
Maŕıa Jesús Garzarán University of Illinois at Urbana-Champaign
Sam Midkiff Purdue University
Paul Petersen Intel Corporation
J. Ramanujam Louisiana State University
P. Sadayappan Ohio State University
Peng Wu IBM Research

Steering Committee

Rudolf Eigenmann Purdue University
Alex Nicolau UC Irvine
David Padua University of Illinois at Urbana-Champaign
Lawrence Rauchwerger Texas A&M University

Sponsoring Institution

University of Illinois at Urbana-Champaign
Siebel Center for Computer Science
Urbana, Illinois, October 11–13, 2007

VIII Organization

Referees

V. Adve
G. Agrawal
G. Almasi
J.N. Amaral
E. Ayguadé
M. Baskaran
G. Baumgartner
P. Berube
R. Bocchino
U. Bondhugula
J. Brodman
C. Caşcaval
L. Ceze
A. Chakravarti
A. Cohen
G. Dozsa
A. Eichenberger
R. Eigenmann
B. Fraguela
F. Franchetti
R. Garg
M.J. Garzarán

R. Ghiya
M. Girkar
M. Gonzalez
A. Gotsman
J. Guo
S. Hack
J. Hoeflinger
A. Kejariwal
G. Kondrak
D. Koppelman
S. Krishnamoorthy
K. Laufer
O. Lhotak
X. Martorell
L. Meadows
J. Mellor-Crummey
S. Midkiff
R. Niewiadomski
D. Nikolopoulos
R. Nishtala
S. Pande
S. Parthasarathy

P. Petersen
C. Pickett
K. Pingali
J. Ramanujam
A. Ramirez
A. Rountev
R. Rugina
P. Sadayappan
E. Salami
R. Schreiber
P. Sdayappan
A. Sidelnik
K. Strauss
Z. Sura
D. Tarditi
X. Tian
P. Unnikrishnan
N. Vasilache
R. Wilhelm
P. Wu
Y. Zheng
P. Zhao

LCPC at Illinois

1989

2007

Keynote Presentation:

NVIDIA CUDA Software and GPU Parallel
Computing Architecture

David Kirk, Chief Scientist, nVidia Corp.

Abstract. In the past, graphics processors were special-purpose hard-
wired application accelerators, suitable only for conventional rasterization-
style graphics applications. Modern GPUs are now fully programmable,
massively parallel floating point processors. This talk describes NVIDIA’s
massively multithreaded computing architecture and CUDA software for
GPUcomputing.The architecture is a scalable, highly parallel architecture
that delivers high throughput for data-intensive processing. Although not
truly general-purpose processors, GPUs can now be used for a wide variety
of compute-intensive applications beyond graphics.

Panel I:
How Is Multicore Programming Different from Traditional Parallel

Programming?

Panelists:
Arch Robison (Intel)

Cǎlin Caşcaval (IBM Research)
Wen-mei Hwu (University of Illinois at Urbana-Champaign)

Hironori Kasahara (Waseda University, Japan) and
Gudula Rünger (Chemnitz University of Technology, Germany)

Moderator:
Vikram Adve (University of Illinois at Urbana-Champaign)

Panel II:
What Have We Learned After 20 LCPCs?

Panelists:
David Kuck (Intel)

Arvind (MIT)
Monica Lam (Stanford University)

Alexandru Nicolau (University of California Irvine)
Keshav Pingali (University of Texas, Austin)

Burton Smith (Microsoft Research) and
Michael Wolfe (the Portland Group)

Moderator:
David Padua (University of Illinois at Urbana-Champaign)

Table of Contents

Reliability

Compiler-Enhanced Incremental Checkpointing . 1
Greg Bronevetsky, Daniel Marques, Keshav Pingali, and Radu Rugina

Techniques for Efficient Software Checking . 16
Jing Yu, Maŕıa Jesús Garzarán, and Marc Snir

Languages

Revisiting SIMD Programming . 32
Anton Lokhmotov, Benedict R. Gaster, Alan Mycroft,
Neil Hickey, and David Stuttard

Multidimensional Blocking in UPC . 47
Christopher Barton, Călin Caşcaval, George Almasi, Rahul Garg,
José Nelson Amaral, and Montse Farreras

An Experimental Evaluation of the New OpenMP Tasking Model 63
Eduard Ayguadé, Alejandro Duran, Jay Hoeflinger,
Federico Massaioli, and Xavier Teruel

Language Extensions in Support of Compiler Parallelization 78
Jun Shirako, Hironori Kasahara, and Vivek Sarkar

Parallel Compiler Technology I

Concurrency Analysis for Shared Memory Programs with Textually
Unaligned Barriers . 95

Yuan Zhang, Evelyn Duesterwald, and Guang R. Gao

Iteration Disambiguation for Parallelism Identification in Time-Sliced
Applications . 110

Shane Ryoo, Christopher I. Rodrigues, and Wen-mei W. Hwu

A Novel Asynchronous Software Cache Implementation for the Cell-BE
Processor . 125

Jairo Balart, Marc Gonzalez, Xavier Martorell, Eduard Ayguade,
Zehra Sura, Tong Chen, Tao Zhang, Kevin O’Brien, and
Kathryn O’Brien

XIV Table of Contents

Pillar: A Parallel Implementation Language . 141
Todd Anderson, Neal Glew, Peng Guo, Brian T. Lewis,
Wei Liu, Zhanglin Liu, Leaf Petersen, Mohan Rajagopalan,
James M. Stichnoth, Gansha Wu, and Dan Zhang

Libraries

Associative Parallel Containers in STAPL . 156
Gabriel Tanase, Chidambareswaran Raman, Mauro Bianco,
Nancy M. Amato, and Lawrence Rauchwerger

Explicit Dependence Metadata in an Active Visual Effects Library 172
Jay L.T. Cornwall, Paul H.J. Kelly, Phil Parsonage, and
Bruno Nicoletti

Run-Time Systems and Performance Analysis

Supporting Huge Address Spaces in a Virtual Machine for Java on a
Cluster . 187

Ronald Veldema and Michael Philippsen

Modeling Relations between Inputs and Dynamic Behavior for General
Programs . 202

Xipeng Shen and Feng Mao

Evaluation of RDMA Opportunities in an Object-Oriented DSM 217
Ronald Veldema and Michael Philippsen

Automatic Communication Performance Debugging in PGAS
Languages . 232

Jimmy Su and Katherine Yelick

Parallel Compiler Technology II

Exploiting SIMD Parallelism with the CGiS Compiler Framework 246
Nicolas Fritz, Philipp Lucas, and Reinhard Wilhelm

Critical Block Scheduling: A Thread-Level Parallelizing Mechanism for
a Heterogeneous Chip Multiprocessor Architecture 261

Slo-Li Chu

Languages II

Capsules: Expressing Composable Computations in a Parallel
Programming Model . 276

Hasnain A. Mandviwala, Umakishore Ramachandran, and
Kathleen Knobe

Table of Contents XV

Communicating Multiprocessor-Tasks . 292
Jörg Dümmler, Thomas Rauber, and Gudula Rünger

General Compiler Techniques

An Effective Automated Approach to Specialization of Code 308
Minhaj Ahmad Khan, H.-P. Charles, and D. Barthou

Flow-Sensitive Loop-Variant Variable Classification in Linear Time 323
Yixin Shou, Robert van Engelen, and Johnnie Birch

Using ZBDDs in Points-to Analysis . 338
Ondřej Lhoták, Stephen Curial, and José Nelson Amaral

Author Index . 353

Compiler-Enhanced Incremental Checkpointing

Greg Bronevetsky1, Daniel Marques2,
Keshav Pingali2, and Radu Rugina3

1 Center for Applied Scientific Computing,
Lawrence Livermore National Laboratory,

Livermore, CA 94551, USA
greg@bronevetsky.com

2 Department of Computer Sciences,
The University of Texas at Austin,

Austin, TX 78712, USA
daniel@ices.utexas.edu, pingali@cs.utexas.edu

3 Department of Computer Science,
Cornell University,

Ithaca, NY 14850, USA
rugina@cs.cornell.edu

Abstract. As modern supercomputing systems reach the peta-flop per-
formance range, they grow in both size and complexity. This makes them
increasingly vulnerable to failures from a variety of causes. Checkpointing
is a popular technique for tolerating such failures in that it allows applica-
tions to periodically save their state and restart the computation after a
failure. Although a variety of automated system-level checkpointing solu-
tions are currently available to HPC users, manual application-level check-
pointing remains by far the most popular approach because of its superior
performance. This paper focuses on improving the performance of auto-
mated checkpointing via a compiler analysis for incremental checkpoint-
ing. This analysis is shown to significantly reduce checkpoint sizes (upto
78%) and to enable asynchronous checkpointing.

1 Introduction

The dramatic growth in supercomputing system capability from the tera-flop to
the peta-flop range has resulted in a dramatic increase in system complexity.
While efforts have been made to limit the complexity of the Operating System
used by these machines, their component counts have continued to grow. Even
as systems like BlueGene/L [3] and the upcoming RoadRunner grow to more
than 100,000 processors and tens of TBs of RAM, future designs promise to
exceed these limits by large margins. While large supercomputers are made from
high-quality components, increasing components counts make them vulnerable
to faults, including hardware breakdowns [11] and soft errors [6].

Checkpointing is a popular technique for tolerating failures. The state of the
application is periodically saved to reliable storage and on failure, the applica-
tion rolls back to a prior state. However, automated checkpointing can be very

V. Adve, M.J. Garzarán, and P. Petersen (Eds.): LCPC 2007, LNCS 5234, pp. 1–15, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 G. Bronevetsky et al.

expensive due to the amount of data saved and the amount of time that the
application loses while being blocked. For example, dumping all of RAM on a
128k-processor BlueGene/L supercomputer to a parallel file system would take
approximately 20 minutes [9]. Incremental checkpointing [10] is one technique
that can reduce the cost of checkpointing. A runtime monitor keeps track of any
application writes. If it detects that a given memory region has not been mod-
ified between two adjacent checkpoints, this region is omitted from the second
checkpoint, thus reducing the amount of data that needs to be saved. Possi-
ble monitors that have been explored in the past include virtual memory fault
handlers [5], page table dirty bits and cryptographic encoding techniques [4].

When virtual memory fault handlers are used to track application writes, it
is possible to further optimize the checkpointing process via a technique called
”copy-on-write checkpointing” or more generally, ”asynchronous checkpointing”.
At each checkpoint all pages that need to be checkpointed are marked non-
writable and placed on a write-out queue. The application is then allowed to
continue executing, while a separate thread asynchronously saves pages on the
write-out queue. When the checkpointing thread is finished saving a given page,
the page is marked writable. If the application tries to write to a page that
hasn’t yet been saved, the segmentation fault handler is called, a copy of the
page is placed in the write-out queue and the application is allowed to resume
execution. The result is that checkpointing is spaced out over a longer period of
time, reducing the pressure on the I/O system, while allowing the application to
continue executing.

In contrast to prior work, which uses runtime techniques for monitoring ap-
plication writes, this paper presents a compile-time analysis for tracking such
writes. Given an application that has been manually annotated with calls to a
checkpoint function, for each array the analysis identifies points in the code
such that either

– there exist no writes to the array between the point in the code and the next
checkpoint and/or

– there exist no writes to the array between the last checkpoint and the point
in the code

When the analysis detects that a given array is not modified between two check-
points, this array is omitted from the second checkpoint. Furthermore, the anal-
ysis enables asynchronous checkpointing by allowing the checkpointing thread
to save a given array during the period of time while there are no writes to
it. Because the compiler analysis can identify write-free regions that begin be-
fore the checkpoint itself, it allows asynchronous checkpointing to begin earlier
than is possible with purely runtime solutions. However, because it works at
array granularity rather than the page- or word-granularity of runtime moni-
toring mechanisms, it can be more conservative in its decisions. Furthermore,
the analysis makes the assumption that a checkpoint is taken every time the
checkpoint function is called, which makes it more complex for users to target
a specific checkpointing frequency.

Compiler-Enhanced Incremental Checkpointing 3

While prior work has looked at compiler analyses for checkpoint optimiza-
tion [7] [12], it has focused on pure compiler solutions that reduce the amount
of data checkpointed. Our work presents a hybrid compiler/runtime approach
that uses the compiler to optimize certain portions of an otherwise runtime
checkpointing solution. This allows us to both reduce the amount of data being
checkpointed as well as support purely runtime techniques such as asynchronous
checkpointing.

2 Compiler/Runtime Interface

Our incremental checkpointing system is divided into run-time and compile-
time components. The checkpointing runtime may either checkpoint application
memory inside of checkpoint calls or include an extra thread that checkpoints
asynchronously. Two checkpointing policies are offered. Memory regions that do
not contain arrays (a small portion of the code in most scientific applications)
are saved in a blocking fashion during calls to checkpoint. Arrays are dealt
with in an incremental and possibly asynchronous fashion, as directed by the
annotations placed by the compiler. The compiler annotates the source code
with calls to the following functions:

– add array(ptr, size) - Called when an array comes into scope to identify
the array’s memory region.

– remove array(ptr) - Called when an array leaves scope. Memory regions
that have been added but not removed are treated incrementally by the
checkpointing runtime.

– start chkpt(ptr) - Called to indicate that the array that contains the
address ptr will not be written to until the next checkpoint. The runtime
may place this array on the write-out queue and begin to asynchronously
checkpoint this array.

– end chkpt(ptr) - Called to indicate that the array that contains the address
ptr is about to be written to. The end chkpt call must block until the
checkpointing thread has finished saving the array. It is guaranteed that
there exist no writes to the array between any checkpoint and the call to
end chkpt.

Overall, the runtime is allowed to asynchronously checkpoint a given array be-
tween calls to start chkpt and end chkpt that refer to this array. If start chkpt
is not called for a given array between two adjacent checkpoints, this array may
be omitted from the second checkpoint because it is known that it was not written
to between the checkpoints.

For a more intuitive idea of how this API is used, consider the transformation
in Figure 1. The original code contains two checkpoint calls, with assignments
to arrays A and B in between. The code within the ...’s does not contain any
writes to A or B. It is transformed to include calls to start chkpt and end chkpt
around the writes. Note that while end chkpt(B) is placed immediately before
the write to B, start chkpt(B) must be placed at the end of B’s write loop. This

4 G. Bronevetsky et al.

Original Code Transformed Code

checkpoint(); checkpoint();
... ...
A[...]=...; end chkpt(A);
... A[...]=...;
for(...) { start chkpt(A);
... ...
B[...]=...; for(...) {
... ...

} end chkpt(B);
... B[...]=...;
checkpoint(); ...

}
start chkpt(B);
...
checkpoint();

Fig. 1. Transformation example

is because a start chkpt(B) call inside the loop may be followed by writes to
B in subsequent iterations. Placing the call immediately after the loop ensures
that this cannot happen.

3 Compiler Analysis

The incremental checkpointing analysis is a dataflow analysis that consists of
forward and backward components. The forward component, called the Dirty
Analysis, identifies the first write to each array after a checkpoint. The backward,
called the Will-Write analysis, identifies the last write to each array before a
checkpoint.

3.1 Basic Analysis

For each array at each node n in a function’s control-flow graph(CFG) the anal-
ysis maintains two bits of information:

– mustDirty[n](array): True if there must exist a write to array along every
path from a checkpoint call to this point in the code; False otherwise.
Corresponds to the dataflow information immediately before n.

– mayWillWrite[n](array): True if there may exist a write to array along
some path from a this point in the code to a checkpoint call; False otherwise.
Corresponds to the dataflow information immediately after n.

This information is propagated through the CFG using the dataflow formulas
in Figure 2. The Dirty and Will-Write analyses start at the top and bottom of
each function’s CFG, respectively, in a state where all arrays are considered to

Compiler-Enhanced Incremental Checkpointing 5

be clean (e.g. consistent with the previous, next checkpoint, respectively). They
then propagate forward and backward, respectively, through the CFG, setting
each array’s write bit to True when it encounters a write to this array. When
each analysis reaches a checkpoint call, it resets the state of all the arrays to
False. For the Dirty Analysis this is because all dirty arrays will become clean
because they are checkpointed. For the WillWrite Analysis this is because at the
point immediately before a checkpoint there exist no writes to any arrays until
the next checkpoint, which is the checkpoint in question.

mustDirty[n](array) =

{
False if n = first node⋂

m∈pred(n) mustDirtyAfter[m](array) otherwise

mustDirtyAfter[m](array) = [[m]](mustDirty[m](array), array)

mayWillWrite[n](array) =

{
False if n = last node⋃

m∈succ(n) mayWillWriteBefore[m](array) otherwise

mayWillWriteBefore[m](array) = [[m]](mayWillWrite[m](array), array)

Statement m [[m]](val, array)

array[expr] = expr True
checkpoint() False
other val

Fig. 2. Dataflow formulas for Dirty and Will-Write analyses

The application source code is annotated with calls to start chkpt and
end chkpt using the algorithm in Figure 3. Such calls are added in three sit-
uations. First, end chkpt (array) is inserted immediately before node n if n
is a write to array and it is not preceded by any other write to array along
some path that starts at a call to checkpoint and ends with node n. Second,
start chkpt(array) is inserted immediately after node n if n is a write to array
and there do not exist any more writes to array along any path that starts with
n and ends at a checkpoint call. Third, a start chkpt(array) is inserted on
a CFG branching edge m → n if mayWillWrite[n](array) is true at m, but
false at n, due to merging of dataflow information at branching point m. This
treatment is especially important when an array is being written inside a loop.
In this case, mayWillWrite[n](array) is true at all points in the loop body,
since the array may be written in subsequent loop iterations. The flag becomes
false on the edge that branches out of the loop, and the compiler inserts the
start chkpt(array) call on this edge.

Because the Dirty analysis is based on must-write information, end chkpt
calls are conservatively placed as late as possible after a checkpoint. Further-
more, the Will-Write analysis’ use of may-write information conservatively places
start save calls as early as possible before a checkpoint.

To provide an intuition of how the analysis works, consider the example
in Figure 4. In particular, consider the points in the code where mustDirty

6 G. Bronevetsky et al.

foreach (array array), foreach (CFG node n) in application
// if node n is the first write to array since the last checkpoint call
if(mustDirty[n](array) = False ∧ mustDirtyAfter[n](array) = True)

place end chkpt(array) immediately before n
// if node n is the last write to array until the next checkpoint call
if(mayWillWriteBefore[n](array) = True ∧ mayWillWrite[n](array) = False)

place start chkpt(array) immediately after n
// if node n follows the last write on a branch where array is no longer written
if(mayWillWriteBefore[n](array) = False∧

∃m ∈ pred(n). mayWillWrite[m](array) = True)
place start chkpt(array) on edge m → n

Fig. 3. Transformation for inserting calls to start chkpt and end chkpt

and mayWillWrite change from False to True. These are the points where
end chkpt and start chkpt calls are inserted.

3.2 Loop-Sensitive Analysis

While the basic analysis performs correct transformations, it has performance
problems when it is applied to loops. This can be seen in the transformed code in
Figure 4. While start chkpt(B) is placed immediately after the loop that writes
to B, end chkpt(B) is placed inside the loop, immediately before the write to B
itself. This happens because the placement of end chkpt depends on must-write
information, instead of the may-write information used in placing start chkpt.
While this placement is conservative, it becomes problematic in the case where
the first post-checkpoint write to an array happens in a small, deeply-nested loop,
which are very common in scientific computing. In this case end chkpt will be
called during each iteration of the loop, causing a potentially severe overhead.

Original Code Code with Dirty States Code with Will-Write States Transformed Code

checkpoint(); checkpoint(); [A→F,B→F] checkpoint(); [A→T,B→T] checkpoint();
... ... [A→F,B→F] ... [A→T,B→T] ...
A[...]=...; A[...]=...; [A→F,B→F] A[...]=...; [A→F,B→T] end chkpt(A);
... ... [A→T,B→F] [A→F,B→T] A[...]=...;
for(...) { for(...) { [A→T,B→F] for(...) { [A→F,B→T] start chkpt(A);
... ... [A→T,B→F] ... [A→F,B→T] ...
B[...]=...; B[...]=...; [A→T,B→F] B[...]=...; [A→F,B→T] for(...) {
... ... [A→T,B→T] ... [A→F,B→T] ...

} } [A→T,B→T] } [A→F,B→T] end chkpt(B);
... ... [A→T,B→F] ... [A→F,B→F] B[...]=...;
checkpoint(); checkpoint(); [A→T,B→F] checkpoint(); [A→F,B→F] ...

}
start chkpt(B);
...
checkpoint();

Fig. 4. Analysis example

Compiler-Enhanced Incremental Checkpointing 7

i=0;

i<n

B[i]=?;

i++;

mustDirty[B]=True
mayDirty[B]=True
mayWillWrite[B]=True

checkpoint();

...

Fig. 5. Dataflow pattern for writes inside loops

To address this problem the above analysis was augmented with a loop-
detection heuristic, shown in Figure 5. This heuristic uses may-Dirty information,
in addition to the must-Dirty and may-WillWrite information of Section 3 and
identifies the patterns of dataflow facts that must hold at the top of the first
loop that writes to an array after a checkpoint. Figure 5 contains the CFG of
such a loop and identifies the edges in the CFG where the various dataflow facts
are True. It can be seen that the pattern at node i < n is:

– mustDirty[i < n](B) = False
– mayDirty[i < n](B) = True
– mayWillWrite[i < n](B) = True
– pred(i < n) > 1

Furthermore, the CFG edge that points to i < n from outside the loop is
the one coming from the predecessor p where mustDirtyAfter[p](B) = False.
Thus, by placing end chkpt(B) on this incoming edge we can ensure both that
end chkpt(B) is called before any write to B and that it is not executed in every
iteration of the loop.

Since this heuristic only applies to loops, it does not place end chkpt(A)
before the write to A in Figure 1. As such, we need to use both rules to en-
sure that end chkpt is placed conservatively. However, if both rules are used
then the example in Figure 1 will get two end chkpt(B) calls: one before B’s
write loop and one before the write itself, negating the purpose of the loop-
sensitive placement strategy. To prevent this from happening we propose an
extra EndChkpt-Placed analysis that prevents end chkpt(array) from being
placed at a given node if there already exists an end chkpt(array) on every
path from any checkpoint call to the node. EndChkpt-Placed is a forward
analysis that is executed as a separate pass from the Dirty and Will-Write
passes. It maintains a bit of information for every array at every CFG node.
mustEndChkptP laced[n](array) is set to True if end chkpt(array) is to be

8 G. Bronevetsky et al.

placed immediately before node n. It is set to False if start chkpt(array) is
to be inserted at n. The later rule ensures that the ”exclusion-zone” of a given
insertion of end chkpt(array) doesn’t last past the next checkpoint call.

To implement this rule the loop-sensitive analysis maintains for each CFG
node n the following additional dataflow information:

– mayDirty[n](array): True if there may exist a write to array along some
path from a checkpoint call to this point in the code; False otherwise.
Corresponds to the dataflow information immediately before n.

– mustEndChkptP laced[n](array): true if all paths from any checkpoint call
to this point in the code contain a point where a end chkpt(array) call will
be placed.

This information is computed as shown in Figure 6. The modified rules for plac-
ing end chkpt calls are shown in Figure 7 and Figure 8 extends the example in
Figure 1 with the new mustEndChkptP laced information and the new place-
ment of end chkpt calls.

3.3 Inter-procedural Analysis

We have extended the above analysis with a context-insensitive, flow-sensitive
inter-procedural analysis. The inter-procedural analysis works by applying the
data-flow analysis from Section 3.2 to the CFG that contains all of the appli-
cation’s functions. When the analysis reaches a function call node for the first
time, it computes a summary for this function. This is done by applying the
dataflow analysis using the formulas in Figure 6 but with a modified lattice.

In addition to the standard True and False, we introduce an additional Unset
state that appears below True and False in the lattice. All the dataflow facts
for all arrays are initialized to Unset at the start or end of the function (start
for the forward analyses and end for the backward analysis). The standard anal-
ysis is then executed on the function using the extended lattice, with Unset
being treated as False for the purposes of the EndChkpt-Placed analysis. If the
state of a given array remains Unset at the end of a given pass, this means
that it was not modified by the pass. In the case of the Dirty and Will-Write
analyses this means that the array is not written to inside the function. In the
case of the EndChkpt-Placed analysis, this means that no end chkpt calls are
placed for this array inside the function. The function summary then is the
dataflow facts for each array at the opposite end of the function: end for the
forward analyses and start for the backward analysis. Function calls are pro-
cessed by applying the function summary as a mask on all dataflow state. If
dataF low[array] = Unset in the function summary, array’s mapping is not
changed in the caller. However, if dataF low[array] = True or False in the sum-
mary, the corresponding dataflow fact for array is changed to True or False in
the caller.

Compiler-Enhanced Incremental Checkpointing 9

mayDirty[n](array) =

{
False if n = first node⋃

m∈pred(n) mayDirtyAfter[m](array) otherwise

mayDirtyAfter[m](array) = [[m]](mayDirty[m](array), array)

mustEndChkptP laced[n](array) ={
False if n = first node⋂

m∈pred(n) mustEndChkptP lacedAfter[m](array) otherwise

mustEndChkptP lacedAfter[m](array) =
if ¬ placeStartChkptNode(m,array) ∧

¬ ∃l ∈ pred(m). placeStartChkptEdge(l,m, array)) then
False

else if (placeEndChkptNode(m,array) ∨
∃l ∈ pred(m). placeEndChkptEdge(l,m, array)) then

True
else mustEndChkptP laced[m](array)

// end chkpt(array) will be placed immediately before node n if
placeEndChkptNode(n, array) =

// node n is the first write to array since the last checkpoint
(mustDirty[n](array) = False ∧ mustDirtyAfter[n](array) = True)

// end chkpt(array) will be placed along the edge m → n if
placeEndChkptEdge(m,n, array) =

// node n is itself clean but predecessor m is dirty, n contains or is followed
// by a write and predecessor m is not itself preceded by end chkpt(array)
(mustDirty[n](array) = False ∧ mayDirty[n](array) = True∧
mayWillWrite[n](B) = True ∧ mustDirtyAfter[m](array) = False∧
mustEndChkptP laced[m](array) = False)

// start chkpt(array) will be placed immediately after node n if
placeStartChkptNode(n, array) =

// node n is the last write to array until the next checkpoint
(mayWillWriteBefore[n](array) = True ∧ mayWillWrite[n](array) = False)

// start chkpt(array) will be placed along the edge m → n if
placeStartChkptEdge(m,n, array) =

// node n follows the last write to array until the next checkpoint
(mayWillWriteBefore[n](array) = False ∧ mayWillWrite[m](array) = True)

Fig. 6. Dataflow formulas for the loop-sensitive extension

10 G. Bronevetsky et al.

foreach (array), foreach (CFG node n) in application
if placeEndChkptNode(n, array)

place end chkpt(array) immediately before n
if ∃m ∈ pred(n). placeEndChkptEdge(m,n, array)

place end chkpt(array) on edge m → n

Fig. 7. Loop-sensitive transformation for inserting calls to end chkpt

Original Code Code with Must-EndChkptPlaced States Transformed Code

checkpoint(); checkpoint(); [A→F,B→F] checkpoint();
... ... [A→F,B→F] ...
A[...]=...; A[...]=...; [A→F,B→F] end chkpt(A);
... [A→T,B→F] A[...]=...;
for(...) { for(...) { [A→T,B→T] start chkpt(A);
... ... [A→T,B→T] ...
B[...]=...; B[...]=...; [A→T,B→T] end chkpt(B);
... ... [A→T,B→T] for(...) {

} } [A→T,B→T] ...
... ... [A→T,B→T] B[...]=...;
checkpoint(); checkpoint(); [A→T,B→T] ...

}
start chkpt(B);
...
checkpoint();

Fig. 8. Transformation example with loop-sensitive optimizations

4 Experimental Evaluation

4.1 Experimental Setup

We have evaluated the effectiveness of the above compiler analysis by imple-
menting it on top of the ROSE [8] source-to-source compiler framework and
applying it to the OpenMP versions [1] of the NAS Parallel Benchmarks [2]. We
have used these codes in sequential mode and have focused on the codes BT,
CG, EP, FT, LU, SP. We have omitted MG from our analysis since it uses dynamic
multi-dimensional arrays (arrays of pointers to lower-dimensional arrays), which
requires additional complex pointer analyses to identify arrays in the code. In
contrast, the other codes use simple contiguous arrays, which require no addi-
tional reasoning power. Each NAS code was augmented with a checkpoint call
at the top of its main compute loop and one immediately after the loop.

The target applications were executed on problem classes S, W and A (S is
the smallest of the three and A the largest), on 4-way 2.4Ghz dual-core Opteron
SMPs, with 16GB of RAM per node (Atlas cluster at the Lawrence Livermore
National Laboratory). Each run was performed on a dedicated node and all re-
ported results are averages of 10 runs. Each application was set to checkpoint

Compiler-Enhanced Incremental Checkpointing 11

5 times, with the checkpoints spaced evenly throughout the application’s exe-
cution. This number was chosen to allow us to sample the different checkpoint
sizes that may exist in different parts of the application without forcing the ap-
plication to take a checkpoint during every single iteration, which would have
been unrealistically frequent.

The transformed codes were evaluated with a model checkpointing runtime
that implements the API from Section 2 and simulates the costs of a real check-
pointer. It performs the same state tracking as a real checkpointer but instead
of actually saving application state, it simply sleeps for an appropriate period of
time. One side-effect of this is the fact that our checkpointer does not simulate
the overheads due to saving variables other than arrays. However, since in the
NAS benchmarks such variables make up a tiny fraction of overall state, the re-
sulting measurement error is small. Furthermore, since the model checkpointer
can sleep for any amount of time, it can simulate checkpointing performance for
a wide variety of storage I/O bandwidths.

The model checkpointer can be run in both a blocking and a non-blocking
mode. In blocking mode the checkpointer does not spawn an asynchronous
checkpointing thread but instead saves all live state inside the main thread’s
checkpoint calls. The model runtime can simulate both a basic checkpointer,
which saves all state and an incremental checkpointer, which only saves the state
that has changed since the last checkpoint. In particular, in incremental mode
the the model checkpointer simulates the checkpointing of any array for which
start chkpt has been called since the last checkpoint call. Arrays for which
start chkpt has not been called are ignored.

In non-blocking mode, the model checkpointer spawns off an asynchronous
checkpointing thread. The thread maintains a write-out queue of memory regions
to save and continuously pulls memory regions the queue, sleeping for as long at it
takes to save the next memory region to disk at the given I/O bandwidth. When
the main thread calls end chkpt for one array, it may be that the checkpointing
thread is currently sleeping on another array. To control the amount of waiting
time, the model checkpointer breaks arrays up into smaller blocks and simulates
checkpointing at block granularity. start chkpt(array) inserts array’s blocks
at the end of the write-out queue. We also tried spreading the new array’s blocks
evenly across the queue but did not find a substantial or consistent performance
difference between the two policies.

4.2 Incremental Checkpointing

We evaluated the effectiveness of the above analysis for incremental checkpoint-
ing by comparing the performance of two configurations of the model check-
pointer’s blocking mode:

– CHKPT ALL - simulates the checkpointing of all application arrays inside each
checkpoint call.

– CHKPT INCR - same as CHKPT ALL but omits any arrays for which start chkpt
hasn’t been called since the last checkpoint call.

12 G. Bronevetsky et al.

Optimized Checkpoint Sizes

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

BT CG EP FT IS LU SP

%
 o

f
o

ri
g

in
a
l

c
h

e
c
k
p

o
in

t
s
iz

e
s

S

W

A

Fig. 9. Checkpoint sizes in CHKPT INCR as a fraction of checkpoint sizes in CHKPT ALL

We first compare the checkpoint sizes generated by the two modes. In the
context of the NAS codes, which have a initialization phase, followed by a main
compute loop, the primary effect of the above analysis is to eliminate write-once
arrays from checkpointing. These are the arrays that are written to during the
initialization phase and then only read from during the main compute loop. As
such, since there do not exist any start chkpt calls for these arrays during the
main compute loop, they are only saved during the first checkpoint and omitted
in subsequent checkpoints.

The measured reductions in checkpoint size are shown in Figure 9. It can
be seen that even using array granularity, incremental checkpointing can result
in a dramatic reduction in checkpoint sizes. Indeed, in CG checkpoints drop to
below 22% of their original size, while FT’s drop to 60%. Other codes see drops
from 0% to 18%. While there are small differences in the effect of incremental
checkpointing across different problem sizes, the effect is generally small.

Figure 10 shows the the execution time of an application that uses incremen-
tal checkpointing as a percentage of the execution time of one that does not. We
show only CG and EP, since the behavior of these codes is similar to that of other
codes that have a large or a small checkpoint size reduction, respectively. The
x-axis is the I/O bandwidth used in the experiments, ranging from 1 MB/s to
1 GB/s in multiples of 4 and including Infinite bandwidth. This range includes
a variety of use-cases, including hard-drives (60MB/s write bandwidth) and 10
Gigabit Ethernet(1GB/s bandwidth). In the case of EP, although there is some
difference in performance between the two versions, the effect is at noise level
at all bandwidths, with no correlation between execution time and performance.
However, for CG, the effect is quite dramatic, ranging from pronounced differ-
ence in execution times for low bandwidths, when the cost of checkpointing is
important, to a much smaller difference for high bandwidths.

Compiler-Enhanced Incremental Checkpointing 13

-100.00%

-80.00%

-60.00%

-40.00%

-20.00%

0.00%

20.00%

1024 4096 16384 65536 262144 1048576 Infinite

Bandwidth (KB/s)

S
W
A

CG

-12.00%

-10.00%

-8.00%

-6.00%

-4.00%

-2.00%

0.00%

2.00%

4.00%

6.00%

8.00%

1024 4096 16384 65536 262144 1048576 Infinite

Bandwidth (KB/s)

S
W
A

EP

Fig. 10. Relative execution time differences between CHKPT INCR and CHKPT ALL

4.3 Asynchronous Checkpointing

We examined the performance characteristics of asynchronous checkpointing by
looking at the relationship between the I/O bandwidth and the block size used
for queue management. To this end we examined a range of block sizes ranging
from 1KB to 64MB in multiples of 4, using the above bandwidth range. For al-
most all code/input class/bandwidth combinations we found that the execution
times formed a bowl shape, an example of which is shown in Figure 11. This Fig-
ure shows LU running on input size W. For each I/O bandwidth we can see high
execution times for the largest and the smallest batch size, with faster runs for
intermediate batch sizes. Large batch sizes have high overhead because of the in-
creased probability that an end chkpt call for some array will occur in the middle
of a long wait for a large block of another array. Small batch sizes are a problem
because of the increased overhead associated with synchronizing on and manip-
ulating a large number of memory regions. While this work does not address the
problem of picking an optimal batch size for a given code/input class/bandwidth
combination, we did find that in general the bottom of the bowl stays flat, with
a wide variety of batch sizes offering similarly good performance. This suggests
that near-optimal batch sizes can be found for a wide variety of combinations. In
our experiments, 64KB batches provided near-optimal performance in all config-
urations examined.

We evaluated the performance of asynchronous checkpointing by picking the
best batch size for each code/input size/bandwidth combination and compared
its performance to that of blocking incremental checkpointing (the CHKPT INCR
configuration from above). The result, for input size W, is shown in Figure 4.3.
For each application it plots:

(execution time w/ asynchronous checkpointing) - (execution time w/ blocking checkpointing)
(execution time w/ blocking checkpointing)

It can be seen that different applications respond very differently to the two algo-
rithms. Whereas CG performs better with asynchronous checkpointing, FT and IS

14 G. Bronevetsky et al.

0

10

20

30

40

50

60

1024 4096 16384 65536 262144 1048576 Infinite

Bandwidth (KB/s)

E
x

e
c

u
ti

o
n

 T
im

e
1024

4096

16384

65536

262144

1048576

4194304

Block Size

 (KB)

Fig. 11. Execution times for different bandwidths and batch sizes (LU-W)

-15.00%

-10.00%

-5.00%

0.00%

5.00%

10.00%

15.00%

20.00%

10
24

40
96

16
38

4

65
53

6

26
21

44

10
48

57
6

In
fin

ite

Bandwidth (KB/s)

bt
cg
ep
ft
is
lu
sp

Fig. 12. Relative execution times for asynchronous vs blocking checkpointing (Class W)

tend to perform better with blocking checkpointing. Input class A shows very sim-
ilar results, while class S exhibits a stronger preference for blocking checkpointing.

While intuitively it may appear that asynchronous checkpointing should al-
ways perform better than blocking checkpointing, these experiments show that
there are some interference effects that complicate this simple analysis. While
the full reason for this effect is still under investigation, it appears that the
additional synchronization required to implement asynchronous checkpointing
may have a negative performance impact. In particular, each call by the appli-
cation thread to start chkpt and end chkpt requires synchronization with the
asynchronous checkpointing thread.

5 Summary

We have presented a novel compiler analysis for optimizing automated check-
pointing. Given an application that has been augmented by the user with calls

Compiler-Enhanced Incremental Checkpointing 15

to a checkpoint function, the analysis identifies regions in the code that do
not have any writes to a given array. This information can be used to reduce
the amount of data checkpointed and to asynchronously checkpoint this data
in a separate thread. In our experiments with the NAS Parallel Benchmarks
we have found that this analysis reduces checkpoint sizes by between 15% and
78% for most of the codes. These checkpoint size reductions were found to have
a notable effect on checkpointing performance. Furthermore, we evaluated the
performance of compiler-enabled asynchronous checkpointing. Although our ex-
periments showed that asynchronous checkpointing can sometimes be better
than blocking checkpointing, we discovered that this is frequently not the case.
As such, the choice between asynchronous and blocking checkpointing depends
on the application itself.

References

1. http://phase.hpcc.jp/Omni/benchmarks/NPB
2. http://www.nas.nasa.gov/Software/NPB
3. Adiga, N.R., Almasi, G., Almasi, G.S., Aridor, Y., Barik, R., Beece, D., Bellofatto,

R., Bhanot, G., Bickford, R., Blumrich, M., Bright, A.A., Brunleroto J.: An
overview of the bluegene/l supercomputer. In: IEEE/ACM Supercomputing Con-
ference (2002)

4. Agarwal, S., Garg, R., Gupta, M.S., Moreira, J.: Adaptive incremental checkpoint-
ing for massively parallel systems. In: Proceedings of the 18th International Con-
ference on Supercomputing (ICS), pp. 277–286 (2004)

5. Gioiosa, R., Sancho, J.C., Jiang, S., Petrini, F.: Transparent, incremental check-
pointing at kernel level: a foundation for fault tolerance for parallel computers. In:
Supercomputing (November 2005)

6. Michalak, S.E., Harris, K.W., Hengartner, N.W., Takala, B.E., Wender, S.A.: Pre-
dicting the number of fatal soft errors in los alamos national laboratorys asc q
supercomputer. IEEE Transactions on Device and Materials Reliability 5(3), 329–
335 (2005)

7. Plank, J.S., Beck, M., Kingsley, G.: Compiler-assisted memory exclusion for fast
checkpointing. IEEE Technical Committee on Operating Systems and Application
Environments 7(4), 10–14 (Winter 1995)

8. Quinlan, D.: Rose: Compiler support for object-oriented frameworks. Parallel Pro-
cessing Letters 10(2-3), 215–226 (2000)

9. Ross, K.C.R., Moreirra, J., Preiffer, W.: Parallel i/o on the ibm blue gene /l system.
Technical report, BlueGene Consortium (2005)

10. Sancho, J.C., Petrini, F., Johnson, G., Fernandez, J., Frachtenberg, E.: On the fea-
sibility of incremental checkpointing for scientific computing. In: 18th International
Parallel and Distributed Processing Symposium (IPDPS), p. 58 (2004)

11. Schroeder, B., Gibson, G.A.: A large-scale study of failures in high-performance
computing systems. In: Proceedings of the International Conference on Dependable
Systems and Networks (DSN) (June 2006)

12. Zhang, K., Pande, S.: Efficient application migration under compiler guidance. In:
Proceedings of the Conference on Languages, Compilers, and Tools for Embedded
Systems, pp. 10–20 (2005)

http://phase.hpcc.jp/Omni/benchmarks/NPB
http://www.nas.nasa.gov/Software/NPB

Techniques for Efficient Software Checking�

Jing Yu, Maŕıa Jesús Garzarán, and Marc Snir

University of Illinois at Urbana-Champaign
{jingyu,garzaran,snir}@cs.uiuc.edu

Abstract. Dramatic increases in the number of transistors that can
be integrated on a chip make processors more susceptible to radiation-
induced transient errors. For commodity chips which are cost- and
energy-constrained, we need a flexible and inexpensive technology for
fault detection. Software approaches can play a major role for this sector
of the market because they need little hardware modifications and can
be tailored to fit different requirements of reliability and performance.
However, software approaches add a significant overhead.

In this paper we propose two novel techniques that reduce the over-
head of software error checking approaches. The first technique uses
boolean logic to identify code patterns that correspond to outcome toler-
ant branches. We develop a compiler algorithm that finds those patterns
and removes the unnecessary replicas. In the second technique we evalu-
ate the performance benefit obtained by removing address checks before
load and stores. In addition, we evaluate the overheads that can be re-
moved when the register file is protected in hardware.

Our experimental results show that the first technique improves per-
formance by an average 7% for three of the SPEC benchmarks. The
second technique can reduce overhead by up-to 50% when the most ag-
gressive optimization is applied.

1 Introduction

Dramatic increases in the number of transistors that can be integrated on a
chip will deliver great performance gains. However, it will also expose a major
roadblock, namely the poor reliability of the hardware. Indeed, in the near-future
environment of low power, low voltage, relatively high frequency, and very small
feature size, processors will be more susceptible to transient errors. Transient
faults, also known as soft errors are due to impacts from high-energy particles
that change the logic values of latches or logic structures [1,2,3,4].

In this new environment, we believe that a Software Checking System has a
fundamental role in providing fault detection and recovery. It is possible that
high-end architectures will include several hardware-intensive fault-tolerant tech-
niques that are currently supported by IBM mainframes [5], HP NonStop [6] or
mission-critical computers [7]. However, commodity multicore chips will likely be

� This material is based upon work supported by the National Science Foundation
under the CSR-AES program Award No. 0615273.

V. Adve, M.J. Garzarán, and P. Petersen (Eds.): LCPC 2007, LNCS 5234, pp. 16–31, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Techniques for Efficient Software Checking 17

too cost- and energy-constrained to include such hardware. Instead, we believe
that they will likely include only relatively simple hardware primitives, such as
parity for certain processor buses and structures, error correction codes (ECC)
and scrubbing in the memory hierarchy [8] and low-cost support for memory
checkpointing and rollback (e.g., ReVive [9] or SafetyNet [10]). Then they will
rely on flexible and inexpensive software technology for error protection.

Current software approaches address the problem by replicating the instruc-
tions and adding checking instructions to compare the results, but they add a
significant overhead. In this paper we propose two novel techniques to reduce the
overhead of the software error checking approaches. The first technique is based
on the fact that programs already have redundancy, and if the compiler can
determine the programs sections where such redundancy exists, it can avoid the
replication and later checking. We use boolean logic to identify a code pattern
that corresponds to outcome tolerant branches and develop a compiler algorithm
that automatically finds those patterns and removes the unnecessary replicas.
The second technique is based on the observation that faults that corrupt the
application tend to quickly generate other noisy errors such as segmentation
faults [11]. Thus, we can reduce replication of the instructions that tend to gen-
erate these type of errors, trading reliability for performance. In this paper we
remove the checks of the memory addresses and discuss situations where remov-
ing these checks affect little to the fault coverage. This occurs when a check of
a variable is covered by a later check to the same variable, and thus errors in
the first check will be detected by the later checks; and in pointer-chasing, when
the data loaded by a load is used immediately by another load. Finally, We also
consider the situation where the register file is protected with parity or ECC,
such as Intel Itanium [12], Sun UltraSPARC [13] and IBM Power4-6 [14]. We
call them register safe platforms.

We have implemented the baseline replication and the proposed techniques
using the LLVM Compiler Infrastructure [15] and run experiments on a Pentium
4 using Spec benchmarks. Our results show that the boolean logic technique
achieves 7% performance speedup on three benchmarks, and 1.6% on average.
If we do not check load addresses, the performance is improved by 20.2%. If we
do not check addresses of both load and store, the performance is improved by
24.8%. On platforms where registers are protected in hardware, we can combine
these techniques and obtain an average speedup of 35.2% and 40.8%, respectively,
and decrease the software checking overhead by 44.9% and 50%, respectively. Our
fault injection experiments show that removing address checks before loads only
increases Silent Data Corruption (SDC) from 0.27% to 0.35%, and removing
address checks for loads and stores raises SDC to 1.11%.

The rest of the paper is organized as follows. Section 2 presents the back-
ground and the baseline software checking; Section 3 describes the techniques
to detect outcome tolerant branches; Section 4 describes the removal of address
checks; Section 5 discusses the benefits of having a register file that is checked in
hardware; Section 6 presents our experimental results; Section 7 presents related
work, and finally Section 8 concludes the paper.

18 J. Yu, M.J. Garzarán, and M. Snir

2 Background and Baseline Software Checking

The use of software approaches for fault tolerance has received significant atten-
tion in the research domain. Software techniques such as SWIFT [16] replicate
the instructions of the original program and interleave the original instructions
and their replicas in the same thread. Memory does not need to be replicated
because the memory hierarchy is protected with ECC and scrubbing. Stores,
branches, function calls and returns are considered “synchronization” points
and checking instructions are inserted before these instructions to validate cer-
tain values. Before a store, checking instructions verify that the correct data
is stored to the correct memory location. Before a branch, checking instruc-
tions verify that the branch takes the appropriate path. Before a function call
checking instructions verify the input operands by comparing them against their
replica. Before a function return, checking instructions verify the return value
by comparing the return register and its replica.

Stores are executed only once, but loads are replicated because the loaded
data can be corrupted. However, uncachable loads, such as those from external
devices, and loads in a multithreaded program may return different values when
executing two consecutive loads to the same memory address; so rather than
replicating the load, checking instructions are also added before loads to verify
that the address of the load matches its replica. After that verification, the
loaded value can be copied to another register [16,17,18]. Thus, since loads are
not replicated, they are also considered “synchronization” points. An example
with the original and its corresponding replicated code is shown in Figure 1-
(a) and (b), respectively. The replicated code contains additional instructions
and uses additional registers marked with a ’. The additional instructions are
shown in bold and numbered. Instructions 1 and 2 check that the load is loading
from the correct address, instruction 3 copies the value in r3 to r3’, instruction
4 replicates the addition, and instruction 5-8 check that the store writes the
correct data to the correct memory address.

(c) Safe registers

cmp r6, r6’
jne faultDet
ld r3=[r6]
mov r3’=r3
....

add r4’=r3’,1
add r4= r3,1

cmp r4, r4’
jne faultDet
cmp r6, r6’
jne faultDet
store [r6]=r4

(b) Replicated code

(5)
(6)
(7)
(8)

(1)
(2)

(3)

(4)

....

ld r3=[r6]

(a) Original code

add r4= r3,1

store [r6]=r4

....

ld r3=[r6]

....
add r4= r3,1

cmp r4, r4’
jne faultDet

store [r6]=r4

(5)
(6)

(4) add r4’=r3,1
....

Fig. 1. Example of baseline software replication and checking

Techniques for Efficient Software Checking 19

3 Use of Boolean Logic to Find Outcome Tolerant
Branches

In this Section we explain how to use boolean logic to reduce the amount of
replicated instructions. We first do an overview (Section 3.1) and then explain
the compiler algorithm (Section 3.2).

3.1 Overview

Our technique is based on the fact that programs have redundancy. For instance,
Wang et al. [19] performed fault injection experiments and found that about 40%
of all the dynamic conditional branches are outcome tolerant. These are branches
that, despite an error, converge to the correct point of execution. These branches
are outcome-tolerant due to redundancies introduced by the compiler or the
programmer. An example of outcome-tolerant branch appears in a structure such
as if (A || B || C) then X else Y. In this case if A is erroneously computed
to be true, but B or C are actually true, this branch is outcome tolerant, since
the code converges to the correct path. The control flow graph of this structure
is shown in Figure 2-(a).

The state-of-the-art approach to check for errors is to replicate branches as
shown in Figure 2-(b), where the circles correspond to the branch replicas. How-
ever, we can reduce overheads by removing the comparison replica when the
branch correctly branches to X. If the original comparison in A is true we need
to execute the comparison replica to verify that the code correctly branches to
X. However, if A is false, we can skip the execution of the A replica and move to
check B. We will only need to execute the A replica if both B and C are also false.
The resulting control flow graph is shown in Figure 2-(c). In situations where A
and B are false, but C is true, we can save a few comparisons.

Outcome tolerant branches also appear in code structures such as if (A &
B & C) then X else Y, and in general in all the code structures that contain
one or more shortcut paths in the control flow graph. A basic shortcut path is
edge(A->X) in Figure 3-(a), where both A and its child point to the same block.
However, most shortcut paths are more complex. For instance, in Figure 3-
(b), block A points to the same block pointed by its grandchild (not its direct

A

C

B

C’

A’

B’

X Y

C’
T

F

A’

B’
T F

F

T

C’

A

C

B

Y

F

F

F

T

T

T

X

(a) Original (b) State of the art (c) Optimized

X

A

C

B

Y

A’

T

T

T

F

F

F

F

B’

A’&&B’&&C’

Fig. 2. Eliminating replicated predicate evaluation

20 J. Yu, M.J. Garzarán, and M. Snir

(b) (c)(a) (d) (e)

A

B

X Y

A

X Y

C

B

Z

A

C

B

X Y

C’

C

B’

A’

C’

X Y

B

A A

B

C

X Y

C’ C’ B’

A’

B’

A’

A’||B’

Fig. 3. Shortcut graphs and optimizations

child). Thus, the optimizer should move A’ from edge(A->B) to edge(B->Z)
and edge(C->Y). The example in Figure 3-(c) can be optimized in two different
ways. If A and B are considered as a whole unit, edge(B->Y) is the shortcut path,
and the graph can be optimized as shown in Figure 3-(d); otherwise, it can be
optimized as shown in Figure 3-(e).

Detecting the existence of a shortcut path is not sufficient to determine that
there is an outcome tolerant branch. The reason is that one of the blocks involved
in the shortcut can modify a variable that is later used by instructions outside
the block. That block needs to be replicated or the error could propagate outside
the block. Next we show two examples:

(a) if (*m > 0) && (m < N) then X else Y
(b) if (t=(*m > 0)) && (m < N) then X else Y

In the example in (a), if (*m>0) is mistakenly computed as True, but (m<N) is
False, we can safely ignore the error on (*m>0) and take the Y path. However,
if the error occurs to the example in (b), and t is used in Y, ignoring the error
will result in a wrong value for t being propagated to Y, which may end up
corrupting the system. To avoid this type of errors our compiler algorithm only
considers blocks that are involved in a shortcut path and produce values that
are only used by the block itself.

3.2 Compiler Algorithm

Our algorithm analyzes the control flow graph of the original program and ex-
tracts the shortcut paths and the related blocks. A shortcut graph always has a
head node (block A in all the examples in Figure 3), one or more intermediate
nodes (like B and C), two or more leaves (like X and Y), and one or more shortcut
paths. Notice that in this paper we call a block to a single basic block or a list
of basic blocks connected one by one with edges of unconditional branches.

Techniques for Efficient Software Checking 21

(b) (c)(a)

X

X

A

Xleaf leafY leaf leafY

A

Yleaf leaf

B

C

A

node
intermediate

node
intermediate

B

intermediate

node

Fig. 4. Constructing potential shortcut graphs

Our algorithm has two phases: first a search of all potential shortcut graphs,
and second, the optimization and appropriate placement of the replicas.

Shortcut Graphs Search. The searching process starts by classifying each
block as an intermediate node or a leaf, and building an intermediate node set
and a leaf set. A block is called “intermediate node” if it ends with a conditional
branch and does not contain side effects (does not contain a function call, a
memory write or generates a value used by another block). In addition, to avoid
being trapped in loops, we require that none of the outgoing edges of an interme-
diate node is a loop backward edge. If the node does not classify as intermediate
node, then it is considered a “leaf”, meaning that this block can be at the most
an ending node in a shortcut graph. At the same time we build the intermediate
and leaf sets, we also build a separate head node set. A block is called ”head
node” if it ends with a conditional branch and none of the outgoing edges is
backwards, no matter it has side effects or not. Thus the head node set contains
all intermediate nodes and some of the leaves.

After building the intermediate node set, the leaf set, and the head node set
the shortcut graphs are built from bottom to up by scanning the head node set
repeatedly. We start by initializing an empty set “graph-head-set”, which will
contain temporary graph head nodes. For any node(A) in the head node set, we
check its two children (see Figure 4):

1. If the two children are leaves, this node is added to the graph-head-set (Fig-
ure 4-(a)).

2. If one child is a leaf(X) and the other child is an intermediate node(B) and
node(B) is already in the graph-head-set, node(B) is replaced by the current
node(A) in the graph-head-set (Figure 4-(b)). We also check if the leaf(X) is
a child or grandchild of node(B), in which case a shortcut path for node (A)
is marked.

3. If the two children are both intermediate nodes((B) and (C)) and both are
in the graph-head-set, nodes (B) and (C) are replaced by node(A) in the
graph-head-set (Figure 4-(c)). We also check if (A) introduces new shortcut
paths.

22 J. Yu, M.J. Garzarán, and M. Snir

B

X Y Z

A

A’

(c)(b)(a)

Z

B

C

Y

A’

X

A’

A’

A

A’

A’
C

A’

B

temp_set1

temp_set0 temp_set2

Child1Child0

dest=X
temp m

ove/copy

Fig. 5. Optimizing shortcut graphs

The scan continues until all the nodes in the head node set have been visited.
Then, a node in the graph-head-set represents a graph led by this node together
with the shortcut paths found. A final pass traverses the graph-head-set and
removes those heads that do not contain any shortcut path.

Optimization. After the shortcut paths are found we start applying the opti-
mization, but we first check when it is legal to perform it. In Figure 2-(b), our
optimization will move the replica A’ from edge(A->B) to edge(C->Y). How-
ever, this is only legal if A dominates C. Otherwise A’ may use undefined values
in the new position. Thus to apply our optimization phase we first verify the
domination relationship of all shortcut paths.

The goal of our optimization pass is to move replicas of the non-shortcut
path down to the edge/s between the last child and the leaf/leaves. Next, we
explain how this algorithm proceeds using the example in Figure 5. For each
shortcut graph in the graph-head-set the algorithm finds all the shortcut paths
(edge(A->X) in Figure 5-(a)), marks the replica (A’) on the other path as
temporary (temp), and records the destination of the shortcut path (X). Next
the optimization pass scans all the intermediate nodes in the shortcut graph in a
top-down fashion, and moves temporary replicas from the incoming edges to all
the outgoing ones, except to those where the recorded destination of the replica
and the destination of the intermediate node that we are processing are the same
(an example is shown in Figure 5-(b)). Notice that when an intermediate node
has multiple incoming edges (as shown in Figure 5-(c)) we only move the replicas
that appear on all the incoming edges. Also notice that this optimization pass
processes nodes top-down, and it does not treat multiple nodes as a single unit.
Thus, for the example in Figure 3-(c), the optimized version after this pass will
be the one shown in Figure 3-(e).

Finally note that A, B and C can contain computations like (s+1) == 5. In this
case, if the computations are only used to determine the outcome of the branch, the
computation replicas are also eliminated when the branch replica does not need to
execute.

Techniques for Efficient Software Checking 23

4 Removal of Address Checks

Recent experiments have shown that faults produce not only data corruption,
but also events that are atypical of steady state operation and that can be used
as a warning that something is wrong [11]. Thus, we can reduce the overhead
of the software approaches and trade reliability for performance by reducing the
replication, hoping that the error will manifest with these atypical events.

In this Section we consider the removal of address checks before load and store
instructions. Errors in the registers containing memory addresses may manifest
as segmentation faults. However, any fault-tolerant system must also include
support for roll-back to a safe state and thus, on a segmentation fault we can
roll-back and re-execute, and only communicate the error to the user if it appears
again. However, by doing this the system will be vulnerable to errors, since some
of these faulty addresses will access a legal space and the operating system will
not be able to detect the error. Thus, this technique will decrease error coverage.
Next, we discuss two techniques that the compiler can use to determine which
load and store instructions are most suitable for address check removal.

Address checks can be removed when there are later checks checking the same
variable. For example, in Figure 1-(b), checking instructions (1-2) and (7-8) are
checking the register r6. This makes the first check (1-2) unnecessary, because if
an error occurs to r6 it will manifest as a segmentation fault or will be eventually
detected by the checking instructions (7-8). We have observed many of these
checks in the SPEC benchmarks due to the register indirect addressing mode,
since the same register is used to access two fields of a structure, or because
two array accesses share a common index. Removing these replicated checks can
significantly reduce the software overhead.

Address checks can also be removed when the probability of error to the loaded
value is small. This case appears in pointer chasing, where the data loaded from
memory is used as the address for a subsequent load. An example is shown in
Figure 6-(a) and (b). In this case, since the processor will issue the second load
as soon as the first one completes, the probability of error is very small. In some
cases, however, the value loaded by the first load is not exactly the one used by
the next load, if not that it may be first modified by an add instruction. This
occurs when accessing an element of a structure that is different from the first
one. In this case, the probability of error is higher, and the checking instructions
will also determine if an error occurred during the computation of the addition.
An example is shown in Figure 6-(c) and (d).

(c)

ld r3=[r2]
check r2

(a)

ld r2=[r1] ld r2=[r1]

(b)

ld r3=[r2] check r4
add r4=r2,16
ld r2=[r1]

ld r3=[r4]

(d)

add r4=r2,16
ld r2=[r1]

ld r3=[r4]

Fig. 6. Address check removal for pointer chasing

24 J. Yu, M.J. Garzarán, and M. Snir

In this paper we evaluate the removal of the address checks for only the loads, or
for both loads and stores. Thus, our results are an upper bound on the performance
benefit that we can obtain and the reliability that we can lose. In the future we
plan to write a data flow analysis to identify the checks that are safe to remove, as
explained above.

5 Register Safe Platforms

In this Section we consider the situation where the register file is hardware
protected with parity or ECC, or other cost-effective mechanisms as the ones
proposed by [20,21,22,23]. In fact, the register file of the Intel Itanium [12], Sun
UltraSPARC [13] and IBM Power4-6 [14] are already protected by parity or
ECC. However, the ALUs and other portions of the processor are not protected,
so arithmetic and logic operations can return wrong results. Thus, all the in-
structions that imply ALU operations need to be replicated; however, memory
operations such as load and stores are safe. As a result, a register that is defined
by a load does not need to be replicated, saving the instruction to perform the
copy and the additional register. An example is shown in Figure 1. The repli-
cated code in Figure 1-(b) can be simplified as shown in Figure 1-(c). Register
r3’ is not necessary because registers and memory are safe, and instruction 4
can use directly the contents from register r3. Instructions 1, 2, 7 and 8 can be
removed if we assume register r6 has been defined by a load. Instructions 5 and
6 cannot be removed because register r4 is defined by an addition, and we need
to validate the results of the addition.

6 Evaluation

In this Section we evaluate our proposed techniques. We first discuss our envi-
ronmental setup (Section 6.1), analyze our techniques statically (Section 6.2),
evaluate performance (Section 6.3), and measure reliability (Section 6.4).

6.1 Environmental Setup

We use LLVM [15] as our compiler infrastructure to generate redundant codes.
Replicated and checking instructions are added at the intermediate level, right
after all the static optimizations have been done. We replicate all the integer
and floating point instructions. Previous implementations have replicated in-
structions at the backend, right before register allocation [16,24] or via dynamic
binary translation [25]. However, the advantages of working at the intermediate
level are: i) the redundant code can be easily ported to other platforms, ii) we do
not need to fully understand the assembly code for that platform, and iii) at the
intermediate level we see a simple memory access model rather than complex one
of the x86 ISA. To prevent optimizations done by the backend generator such
as common subexpression elimination and instruction combination, we tag the
replicated instructions, and the backend optimizations are applied separately to
the tag and the untag instructions.

Techniques for Efficient Software Checking 25

For the evaluation we use SPEC CINT2000 and the C codes from SPEC CFP
2000, running with the ref inputs. Experiments are done on a 3.6GHz INTEL Pen-
tium 4 with 2GB of RAM running RedHat9 Linux.

6.2 Static Analysis

In this Section we characterize load addresses depending on whether the regis-
ter is checked by a later checking instruction (Covered), or if the register used
by the load was just loaded from memory (Loaded), as in the pointer chasing
example of Section 4. All the remaining load addresses are classified as (Other).
The breakdown is shown in Figure 7. On average more than 40% load addresses
have nearby later checks on the same value. About 20% of the loads use registers
whose contents where just loaded from memory. As we have discussed in Sec-
tion 4, the probability of error of any of these addresses is very small, because
the processor will likely issue the second load as soon as the first one completes.
Also, if we assume a register safe platform these checks are unnecessary. For
the remaining 40% of the addresses, an error in the most significant bits will be
detected as a form of segmentation faults, but an error in the least significant
ones can cause a silent error.

6.3 Performance

Figure 8 shows the performance speedup obtained when using boolean logic to
eliminate replication and checks on outcome tolerant branches (Section 3). Three
benchmarks (gzip, vpr, and perlbmk) achieve 7% performance gains, though the
average speedup is 1.6% through all tested benchmarks. Notice that there is also
a negative impact on vortex, where we observe more load/store instructions after
the optimization, meaning that this optimization introduces additional register
spills that hurt the benefit of less dynamic instructions.

Figure 9 evaluates the performance benefit of our second technique (Section 4):
baseline Fully Replicated(FullRep), No checks for Address of Loads(NAL), No
checks for Address of Load and Store(NALS), and No checks when the Regis-
ter file is safe (R). The Fully Replicated code(FullRep) is on average 2.38 times

0%

20%

40%

60%

80%

100%

gz
ip vp

r
m

cf

cr
af

ty

pa
rs

er

pe
rlb

m
k

ga
p

vo
rte

x
bz

ip2
m

es
a ar

t

eq
ua

ke

am
m

p
AVG

Other

Loaded

Covered

Fig. 7. Characterization of load addresses

26 J. Yu, M.J. Garzarán, and M. Snir

-2.00%

0.00%

2.00%

4.00%

6.00%

8.00%

gz
ip vp

r
m

cf

cr
af

ty

pa
rs

er

pe
rlb

m
k

ga
p

vo
rte

x
bz

ip2 tw
olf

m
es

a ar
t

eq
ua

ke

am
m

p
AVG

BooleanLogic

Fig. 8. Performance speedup with boolean logic optimization compared to baseline
replication

1

1.5

2

2.5

3

3.5

gzip vpr mcf parser perlbmk gap vortex bzip2 mesa art equake ammp AVG

FullRep

NAL

NALS

R+FullRep

R+NAL

R + NALS

Fig. 9. Performance of the different optimizations normalized against the original non-
replicated code

slower than the original code. This large overhead is due to high register pres-
sure and additional instructions. On average, register safe optimization (R) runs
16.0% faster than the (FullRep).

After we remove checks for address of loads (NAL), we get an average 20.2%
speedup over the baseline Fully Prelicated (FullRep). If we further remove checks
for address of stores (NALS), we improve 4.6% more. And if the register is
protected in hardware and we combine (NAL) or (NALS) with (R), we can
obtain an average speedup of 35.2% and 40.8% respectively, what will reduce
the the software checking overhead by 44.9% and 50%, respectively. Notice that
with (NALS) all address checks before loads and stores are removed, so the
performance benefit of (R+NALS) versus (NALS) is due to the reduced register
pressure (the register of the load does not need to be replicated) and the removal
of a few additional checks before the data being stored.

6.4 Reliability

Our first technique is very conservative and should not affect the fault cover-
age. But for the second technique, since we remove all the checks for memory
addresses, memory can be corrupted. In order to evaluate the loss of fault cov-
erage, we use Pin [26] and inject faults to the binary file (excluding system
libraries). We assume a Single Event Upset(SEU) fault model, so only one bit
fault is injected during the execution of the program. In total 300 faults are
injected for each program. Although both integer and floating point registers

Techniques for Efficient Software Checking 27

(a) Random fault injection scheme (O - Original non-replicated code, FR - Fully Replicated code,
NAL - No address check for load, NALS - No address check for load, store)

(b) Safe register fault injection scheme (O - Original non-replicated code, RFR - Fully Replicated code with Register Safe OPT,
RNAL - No address check for load with Register Safe OPT, RNALS - No address check for load, store with Resiter Safe OPT)

0%

20%

40%

60%

80%

100%
O F
R

N
A

L
N

A
LS O F
R

N
A

L
N

A
LS O F
R

N
A

L
N

A
LS O F
R

N
A

L
N

A
LS O F
R

N
A

L
N

A
LS O F
R

N
A

L
N

A
LS O F
R

N
A

L
N

A
LS O F
R

N
A

L
N

A
LS O F
R

N
A

L
N

A
LS O F
R

N
A

L
N

A
LS O F
R

N
A

L
N

A
LS O F
R

N
A

L
N

A
LS O F
R

N
A

L
N

A
LS

gzip vpr mcf parser perlbmk gap vortex bzip2 mesa art equake ammp AVG

SDC

Seg Fault

Self-Detected

Detected

unACE

0%

20%

40%

60%

80%

100%

O
R

F
R

R
N

A
L

R
N

A
LS O

R
F

R
R

N
A

L
R

N
A

LS O
R

F
R

R
N

A
L

R
N

A
LS O

R
F

R
R

N
A

L
R

N
A

LS O
R

F
R

R
N

A
L

R
N

A
LS O

R
F

R
R

N
A

L
R

N
A

LS O
R

F
R

R
N

A
L

R
N

A
LS O

R
F

R
R

N
A

L
R

N
A

LS O
R

F
R

R
N

A
L

R
N

A
LS O

R
F

R
R

N
A

L
R

N
A

LS O
R

F
R

R
N

A
L

R
N

A
LS O

R
F

R
R

N
A

L
R

N
A

LS O
R

F
R

R
N

A
L

R
N

A
LS

gzip vpr mcf parser perlbmk gap vortex bzip2 mesa art equake ammp AVG

SDC

Seg Fault

Self-Detected

Detected

unACE

Fig. 10. Fault-detection rates break down

can be corrupted, in order to magnify the impact of the errors we only inject
fault to the 8 32-bit integer registers and the status flags EFLAGS. When we
consider that the register file is not protected in hardware we mimic the fault
distribution by randomly selecting a dynamic instruction and flipping a random
bit in a random register (we call this scheme “random fault injection”). When
the register file is protected in hardware, we do the same, but flip the random
bit from its “output”. The output can be in a register or in memory if it has
been spilled. In this scheme, memory load instructions are avoided (we call this
scheme “safe register fault injection”).

After injecting an error into the binary, the program is run to completion
(unless it aborts) and its output is compared to a correct output. Depending on
the result the error will be categorized as: (unACE), the bit is unnecessary for
Architectural Correct Execution [27]; (Detected), the error is detected by our
checking code; (Self-Detected), the error is detected by the program assertions;
(Seg Fault), the error manifests as an exception or a segmentation fault; (SDC),
Silent Data Corruption, when the program finishes normally but the produced
output is incorrect. (SDC) is the first type of errors we want to prevent. Then,
we also want to minimize (self-Detected) errors and (Seg Fault), because it is
usually hard to determine if the error is due to a program bug or a soft error.
But with proper support, if we can roll-back and re-execute, these faults can be
recovered, so they are less harmful.

Figure 10-(a) and (b) show the experimental results for random fault injec-
tion and safe register fault injection, respectively. The fault detection rates for
these two schemes are very similar. Notice that the original program (O) has

28 J. Yu, M.J. Garzarán, and M. Snir

on average 75% (unACE) and less than 10% (SDC), which means that the soft-
ware itself has a certain fault maskability. With the safe register scheme more
faults result in SDC than with the random scheme (8.5% over 5%) and less
Seg Fault (15.6% over 17%). The reason is that the random scheme is more
likely to pick up a dynamic dead register or a register that holds the index for
addresses.

After the program is replicated (FR), most (Seg Fault), (Self-Detected) and
(SDC) go to the (Detected) category. (SDC) errors appear because some faults
are injected before the value is used but after is checked. If we remove checks
for addresses, reliability does not drop much. Under random injection scheme,
if we remove checks for load addresses (NAL), comparing to (FR), (SDC) in-
creases from 0.36% to 1.08%, (Seg Fault) increases from 4.47% to 8.05%. If we
also remove checks for store addresses (NALS), (SDC) rises to 1.44%, and (Seg
Fault) rises to 9.02%. Under safe register injection scheme, removing checks for
load addresses increases (SDC) from 0.27% to 0.38%, increase (Seg Fault) from
2.66% to 4.99%. Removing checks for store addresses further results in (SDC)
of 1.11%, and (Seg Fault) of 4.99%. In other words, when normalized to the
original program, under the safe register scheme removing checks for addresses
of load only incurs an extra 1.3% (SDC), while removing checks for all addresses
incurs 9.8%(SDC). Given that we almost decrease the performance overhead by
half, this loss of fault coverage seems acceptable.

7 Related Work

Previous work on compiler instrumentation for fault tolerance focuses on repli-
cation and checking. There have been previous works on software checking opti-
mization. For example, SWIFT [16] merges checks before branches into control
flow signature checks, and removes checks for blocks that do not have stores.
In this paper, we propose a new area for optimization: when the code structure
itself can mask errors and the compiler can determine those programs sections,
replication and later checking can be avoided.

Some previous works provide ways to trade reliability for performance. For ex-
ample, the work by Oh and McCluskey [28] selectively duplicates procedure calls
instead of replicating instructions inside them. This way error detection latency
is sacrificed for less power consumption. But for each procedure, either all the
instructions in the procedure or the call needs to be replicated. PROFiT [29] and
Spot [25] divide program into regions and pick up only important regions to do
software replication and checking. Spot provides very flexible selection granular-
ity, ranging from a few blocks to a whole procedure. However, in Spot making a
good selection requires knowledge of fault mask probability and replication over-
head for each region. Jonathan Chang et. al [20] propose to protect a portion of
the register file based on a profile of register life time and usage. For different
platforms or different programs, the protected portion may be different. In this
paper, we provide a fine and simple leverage control: we choose to remove checks
for addresses of load or stores. With static compiler analysis, this technique can

Techniques for Efficient Software Checking 29

be applied independently of the target platform. Furthermore, we can combine
this technique with previous ones to trade fault coverage with performance.

Previous works on compiler instrumentation for fault-tolerance implement
their techniques at the source level [30], compiler backend [16,24,31,29,32], or
runtime binary level [25]. However, our techniques are implemented at the in-
termediate level, which makes it portable across platforms and friendly to users
who are not expert on the target ISA.

8 Conclusion

This paper makes several contributions. First, we identify a code pattern that
corresponds to outcome tolerant branches, and develop a compiler algorithm
that finds these patterns, avoiding unnecessary replication and checking. Second,
we evaluate the removal of address checks for loads and stores, and analyze
situations where these checks can be removed with little loss of fault coverage.
We also identify the check and replicated registers that can be removed on a
register safe platform.

Optimizing outcome tolerant branches obtains 7% performance speedup for
3 benchmarks, and an average of 1.6% for all, while keeping the same level of
reliability. We also find that on register safe platforms removing the checks for the
addresses of load reduce the replication overhead by 44.9%, and only increases
SDC (Silent Data Corruption) rate from 0.27% to 0.38%. Also, if 1.11% SDC
rate is acceptable, we can furthermore reduce the replication overhead by 50%
by also removing checks for the store addresses.

References

1. Constantinescu, C.: Impact of Deep Submicron Technology on Dependability of
VLSI Circuits. In: Proc. of the International Conf. on Dependable Systems and
Networks, pp. 205–209 (2002)

2. Hazucha, P., Karnik, T., Walstra, S., Bloechel, B., Tschanz, J.W., Maiz, J.,
Soumyanath, K., Dermer, G., Narendra, S., De, V., Borkar, S.: Measurements and
Analysis of SER-tolerant Latch in a 90-nm dual-V/sub T/ CMOS Process. IEEE
Journal of Solid-State Circuits 39(9), 1536–1543 (2004)

3. Karnik, T., Hazucha, P.: Characterization of Soft Errors Caused by Single Event
Upsets in CMOS Processes. IEEE Transactions on Dependable and Secure Com-
puting 1(2), 128–143 (2004)

4. Shivakumar, P., Kistler, M., Keckler, S., Burger, D., Alvisi, L.: Modeling the Effect
of Technology Trends on the Soft Error Rate of Combinational Logic. In: Proc. of
the International Conf. on Dependable Systems and Networks, pp. 289–398 (2002)

5. Slegel, T., Averill, R., Check, M., Giamei, B., Krumm, B., Krygowski, C., Li,
W., Liptay, J., MacDougall, J., McPherson, T., Navarro, J., Schwarz, E., Shum,
K., Webb, C.: IBM’s S/390 G5 Microprocessor Design. IEEE Micro 19(2), 12–23
(1999)

6. McEvoy, D.: The architecture of tandem’s nonstop system. In: ACM 1981: Pro-
ceedings of the ACM 1981 conference, p. 245. ACM Press, New York (1981)

30 J. Yu, M.J. Garzarán, and M. Snir

7. Yeh, Y.: Triple-triple Redundant 777 Primary Flight Computer. In: Proc. of the
IEEE Aerospace Applications Conference, pp. 293–307 (1996)

8. Mukherjee, S., Emer, J., Fossum, T., Reinhardt, S.: Cache Scrubbing in Micropro-
cessors: Myth or Necessity? In: Proc. of the Pacific RIM International Symposium
on Dependable Computing, pp. 37–42 (2004)

9. Prvulovic, M., Zhang, Z., Torrellas, J.: ReVive: Cost-Effective Architectural Sup-
port for Rollback Recovery in Shared-Memory Multiprocessors. In: Proc. of the
International Symposium on Computer Architecture (ISCA) (2002)

10. Sorin, D., Martin, M., Hill, M., Wood, D.: SafetyNet: Improving the Availability
of Shared Memory Multiprocessors with Global Checkpoint/Recovery. In: Proc. of
the International Symposium on Computer Architecture (ISCA) (2002)

11. Wang, N.J., Patel, S.J.: ReStore: Symptom Based Soft Error Detection in Micro-
processors. In: Proc. of the International Conference on Dependable Systems and
Network (DSN), pp. 30–39 (2005)

12. McNairy, C., Bhatia, R.: Montecito: A Dual-core, Dual-thread Itanium Processor.
IEEE Micro 25(2), 10–20 (2005)

13. Kongetira, P., Aingaran, K., Olukotun, K.: Niagara: A 32-way multithreaded sparc
processor. IEEE Micro 25(2), 21–29 (2005)

14. Bossen, D., Tendler, J., Reick, K.: Power4 system design for high reliability. IEEE
Micro 22(2), 16–24 (2002)

15. Lattner, C., Adve, V.: The LLVM Compiler Framework and Infrastructure Tuto-
rial. In: Eigenmann, R., Li, Z., Midkiff, S.P. (eds.) LCPC 2004. LNCS, vol. 3602.
Springer, Heidelberg (2005)

16. Reis, G.A., Chang, J., Vachharajani, N., Rangan, R., August, D.I.: SWIFT: Soft-
ware Implemented Fault Tolerance. In: Proc. of the International Symposium on
Code Generation and Optimization (CGO) (2005)

17. Mukherjee, S.S., Kontz, M., Reinhardt, S.K.: Detailed Design and Evaluation of
Redundant Multithreading Alternatives. In: Proc. of International Symposium on
Computer Architecture, Washington, DC, USA, pp. 99–110. IEEE Computer So-
ciety, Los Alamitos (2002)

18. Reinhardt, S.K., Mukherjee, S.S.: Transient Fault Detection via Simultaneous Mul-
tithreading. In: Proc. of International Symposium on Computer Architecture, pp.
25–36. ACM Press, New York (2000)

19. Wang, N., Fertig, M., Patel, S.: Y-Branches: When You Come to a Fork in the
Road, Take It. In: Proc. of the International Conference on Parallel Architectures
and Compilation Techniques (PACT) (2003)

20. Chang, J., Reis, G.A., Vachharajani, N., Rangan, R., August, D.: Non-uniform
fault tolerance. In: Proceedings of the 2nd Workshop on Architectural Reliability
(WAR) (2006)

21. Gaisler, J.: Evaluation of a 32-bit microprocessor with built-in concurrent error de-
tection. In: FTCS 1997: Proceedings of the 27th International Symposium on Fault-
Tolerant Computing (FTCS 1997), Washington, DC, USA, p. 42. IEEE Computer
Society, Los Alamitos (1997)

22. Montesinos, P., Liu, W., Torrellas, J.: Shield: Cost-Effective Soft-Error Protection
for Register Files. In: Third IBM TJ Watson Conference on Interaction between
Architecture, Circuits and Compilers (PAC 2006) (2006)

23. Hu, J., Wang, S., Ziavras, S.G.: In-register duplication: Exploiting narrow-width
value for improving register file reliability. In: DSN 2006: Proceedings of the Inter-
national Conference on Dependable Systems and Networks (DSN 2006), Washing-
ton, DC, USA, pp. 281–290. IEEE Computer Society, Los Alamitos (2006)

Techniques for Efficient Software Checking 31

24. Reis, G.A., Chang, J., Vachharajani, N., Rangan, R., August, D.I., Mukherjee,
S.S.: Design and Evaluation of Hybrid Fault-Detection Systems. In: Proc. of the
International International Symposium on Computer Architecture (ISCA) (2005)

25. Reis, G.A., Chang, J., August, D.I., Cohn, R., Mukherjee, S.S.: Configurable Tran-
sient Fault Detection via Dynamic Binary Translation. In: Proceedings of the 2nd
Workshop on Architectural Reliability (WAR) (2006)

26. Luk, C., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S., Reddi,
V.J., Hazelwood, K.: Pin: Building Customized Program Analysis Tools with Dy-
namic Instrumentation. In: Proc. of the International Conference on Programming
Language Design and Implementation (PLDI) (2005)

27. Mukherjee, S.S., Weaver, C., Emer, J., Reinhardt, S.K., Austin, T.: A Sys-
tematic Methodology to Compute the Architectural Vulnerability Factors for a
High-Performance Microprocessor. In: MICRO 36: Proceedings of the 36th an-
nual IEEE/ACM International Symposium on Microarchitecture, Washington, DC,
USA, p. 29. IEEE Computer Society, Los Alamitos (2003)

28. Oh, N., McCluskey, E.J.: Low Energy Error Detection Technique Using Procedure
Call Duplication. In: Proc. of the International Conference on Dependable Systems
and Network (DSN) (2001)

29. Reis, G.A., Chang, J., Vachharajani, N., Rangan, R., August, D.I., Mukherjee,
S.S.: Software-controlled fault tolerance. ACM Trans. Archit. Code Optim. 2(4),
366–396 (2005)

30. Rebaudengo, M., Reorda, M.S., Violante, M., Torchiano, M.: A Source-to-Source
Compiler for Generating Dependable Software. In: IEEE International Workshop
on Source Code Analysis and Manipulation (SCAM), pp. 35–44 (2001)

31. Oh, N., Shirvani, P., McCluskey, E.J.: Error Detection by Duplicated Instructions
in Super-scalar Processors. IEEE Transactions on Reliability 51(1), 63–75 (2002)

32. Chang, J., Reis, G.A., August, D.I.: Automatic Instruction-Level Software-Only
Recovery. In: DSN 2006: Proceedings of the International Conference on Depend-
able Systems and Networks (DSN 2006), Washington, DC, USA, pp. 83–92. IEEE
Computer Society, Los Alamitos (2006)

Revisiting SIMD Programming

Anton Lokhmotov1,�, Benedict R. Gaster2,
Alan Mycroft1, Neil Hickey2, and David Stuttard2

1 Computer Laboratory, University of Cambridge
15 JJ Thomson Avenue, Cambridge, CB3 0FD, UK

2 ClearSpeed Technology
3110 Great Western Court, Bristol, BS34 8HP, UK

Abstract. Massively parallel SIMD array architectures are making their way into
embedded processors. In these architectures, a number of identical processing
elements having small private storage and using asynchronous I/O for accessing
large shared memory executes the same instruction in lockstep.

In this paper, we outline a simple extension to the C language, called Cn,
used for programming a commercial SIMD array architecture. The design of Cn

is based on the concept of the SIMD array type architecture and revisits first
principles of designing efficient and portable parallel programming languages.
Cn has a low level of abstraction and can also be seen as an intermediate language
in the compilation from higher level parallel languages to machine code.

1 Introduction

Massively parallel SIMD array architectures are no longer merely the province of large
supercomputer systems but are making their way into embedded processors. What
seemed a cautious extrapolation a decade ago (“even a parallel SIMD coprocessor em-
bedded in a single-user workstation may not be such a far-fetched idea” [1]) has now
become a reality.

In the 40 years since the design of Illiac IV [2], the first large-scale array computer
consisting of 64 processing elements (PEs), the progress of VLSI technology allows to
pack even more PEs into a single-chip microprocessor that in most respects can be con-
sidered “embedded”. For example, ClearSpeed’s CSX600 array processor consisting of
96 PEs has excellent performance per unit power by delivering more than 3 GFLOPS
per watt [3].

The CSX is a SIMD array architecture with a control unit and a number of processing
elements, with each PE having relatively small private storage and using asynchronous
I/O mechanisms to access large shared memory.

In this paper, we describe a data-parallel extension to the C language, called Cn, for
programming the CSX architecture. In Cn, parallelism is mainly expressed at the type
level rather than at the code level. Essentially, Cn introduces a new multiplicity type
qualifier poly which implies that each PE has its own copy of a value of that type. For
example, the definition poly int X; implies that, on the CSX600 with 96 PEs, there

� This author gratefully acknowledges the financial support by a TNK-BP Cambridge Kapitza
Scholarship and by an Overseas Research Students Award.

V. Adve, M.J. Garzarán, and P. Petersen (Eds.): LCPC 2007, LNCS 5234, pp. 32–46, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Revisiting SIMD Programming 33

exist 96 copies of integer variable X, each having the same address within its PE’s local
storage.

The multiplicity is also manifested in conditional statements. For example, the fol-
lowing code assigns zero to (a copy of) X on every even PE (the runtime function
get_penum() returns the ordinal number of a PE):

if(get_penum()%2 == 0) X = 0;

On every odd PE, the assignment is not executed (this is equivalent to issuing a NOP
instruction, as the SIMD array operates in lock-step).

We describe designing Cn as an efficient and portable language. Efficiency and
portability often conflict with each other (especially in parallel languages [4]). We argue
that the CSX architecture (§2) is representative of its class and thus can be considered
as a SIMD array type architecture (§3). Core Cn operations (§4) can be thought of as
cheap (in the spirit of C), while more expensive operations are relegated to the standard
library. We compare and contrast Cn design decisions with similar approaches (§5),
and then argue that Cn can be seen as an intermediate language in the compilation from
higher level parallel languages (§6). We briefly discuss the Cn compiler implementation
(§7) and outline future work in conclusion (§8).

2 CSX Architecture

This section outlines ClearSpeed’s CSX architecture [3], which largely honours the
classical SIMD array organisation pioneered by the Solomon/Illiac IV designs [5], al-
beit embodied in a single chip.

2.1 CSX Family

The CSX architecture is a family of processors based on ClearSpeed’s multi-threaded
array processor (MTAP) core. The architecture has been developed for high rate pro-
cessing. CSX processors can be used as application accelerators, alongside general-
purpose processors such as those from Intel and AMD.

The MTAP consists of execution units and a control unit. One part of the processor
forms the mono execution unit, dedicated to processing scalar (or mono) data. Another
part forms the poly execution unit, which processes parallel (or poly) data, and may
consist of tens, hundreds or even thousands of identical processing element (PE) cores.
This array of PE cores operates in a synchronous, Single Instruction Multiple Data
(SIMD) manner, where every enabled PE core executes the same instruction on its local
data.

The control unit fetches instructions from a single instruction stream, decodes and
dispatches them to the execution units or I/O controllers. Instructions for the mono and
poly execution units are handled similarly, except for conditional execution. The mono
unit uses conditional jumps to branch around code like a standard RISC architecture.
This affects both mono and poly operations. The poly unit uses an enable register to
control execution of each PE. If one or more of the bits of that PE enable register is
zero, then the PE core is disabled and most instructions it receives will be ignored. The
enable register is a stack, and a new bit, specifying the result of a test, can be pushed

34 A. Lokhmotov et al.

onto the top of the stack allowing nested predicated execution. The bit can later be
popped from the top of the stack to remove the effect of that condition. This makes
handling nested conditions and loops efficient.

In order to provide fast access to the data being processed, each PE core has its
own local memory and register file. Each PE core can directly access only its own stor-
age. (Instructions for the poly execution unit having a mono register operand indirectly
access the mono register file, as a mono value gets broadcast to each PE.) Data is trans-
ferred between PE (poly) memory and the poly register file via load/store instructions.
The mono unit has direct access to main (mono) memory. It also uses load/store instruc-
tions to transfer data between mono memory and the mono register file. Programmed
I/O (PIO) extends the load/store model: it is used for transfers of data between mono
memory and poly memory.

2.2 CSX600 Processor

The CSX600 is the first product in the CSX family. The processor is optimised for in-
tensive double-precision floating-point computations, providing sustained 33 GFLOPS
of performance on DGEMM (double precision matrix multiply), while dissipating an
average of 10 watts. The poly execution unit is a linear array of 96 PE cores, with 6KB
SRAM and a superscalar 64-bit FPU on each PE core. The PE cores are able to com-
municate with each other via what is known as swazzle path that connects each PE with
its left and right neighbours. Further details can be found in white papers [3].

2.3 Acceleration Example

A Cn implementation of Monte-Carlo simulations for computing European option pric-
ing with double precision performs 100,000 Monte-Carlo simulations at the rate of
206.5M samples per second on a ClearSpeed Advance board having two CSX600 chips.
In comparison, an optimised C program using the Intel Math Kernel Library (MKL) and
compiled with the Intel C Compiler achieves the rate of 40.5M samples per second on
a 2.33GHz dual-core Intel Xeon (Woodcrest, HP DL380 G5 system). Combining both
the Intel processor and the ClearSpeed board achieves the rate of 240M samples per
second, which is almost 6 times the performance of the host processor alone.

3 Cn Design Goals and Choices

The key design goals of Cn were efficiency and portability. We first discuss these goals
in a broader context of programming languages for sequential and parallel computers
(§3.1), and then discuss how they affected the design choices of Cn (§3.2).

3.1 Efficiency and Portability

Program efficiency and portability are two common tenets of high-level programming
languages. Efficiency means that it is possible to write a compiler generating code that
is “almost” as fast as code written in assembly. Portability means that software can be
adapted to run on different target systems.

Revisiting SIMD Programming 35

Languages like C have been successful largely because of their efficiency and porta-
bility on von Neumann machines, having a single processor and uniform random
access memory. Efficiency comes from the programmer’s clear understanding of the per-
formance implications of algorithm selection and coding style. Portability is achieved
because languages like C hide most features of physical machines, such as instruction
set, addressing modes, register file, etc. Moreover, the hidden features apparently have
a negligible effect on performance, so porting often maintains efficiency [4].

Efficiency and portability are even more desired when programming parallel sys-
tems. Performance is the most compelling argument for parallel computing; and given
the amount of human effort required to develop an efficient parallel program, the result-
ing program should better have a long useful life [6].

In the world of parallelism, however, no single model accurately abstracts the vari-
ability of parallel systems. While it is possible, for example, to program distributed
memory machines using a shared memory model, programmers having limited control
over data distribution and communication are unlikely to write efficient programs. So
in this world, sadly, efficiency and portability are no longer close friends.

Snyder introduced [7] the notion of a type architecture—a machine model abstract-
ing the performance-important features of a family of physical machines, in the same
way as the RAM model abstracts von Neumann machines. He proposed the Candidate
Type Architecture (CTA) which effectively abstracts MIMD machines (multicomput-
ers) with unspecified interconnect topology. The key CTA abstraction is that accessing
another processor’s memory is significantly more expensive than accessing local mem-
ory (typically by 2–5 orders of magnitude) [4].

3.2 Cn as a Language for the SIMD Array Type Architecture

Our key observation is that the CSX architecture can be considered a SIMD array
type architecture (SATA), as it respects classical organisation and has typical costs
of communicating data between main (mono) and local (poly) memory. Designing a
core language based on the type-architecture facilities should provide both efficiency
and portability [7]. To match the programmer’s intuition, core language operations are
cheap, while operations relegated to the standard library are more expensive. For ex-
ample, arithmetic operations are cheap, while reduction operations (using the inter-PE
communication) are somewhat more expensive, albeit still cheaper than data transfer
operations between mono and poly memories.

Efficiency mandates only providing language constructs that can be reliably imple-
mented on the SATA using standard compiler technology. History shows that languages
that are difficult to implement are also rarely successful (HPF is a dismal example [8]).

Portability is important because the CSX architecture family (§2.1) does not fix the
PE array size. Also, as the number of PE cores increases, other (than linear) interconnect
topologies could be introduced.

Designing Cn as a C extension provides a known starting point for a large community
of C programmers. In addition, software development tools can be written by making
(small) modifications to existing ones, rather than from scratch.

36 A. Lokhmotov et al.

4 Cn Outline

In this section we outline the most salient features of Cn. We give further rationale
behind some design decisions in §5.

4.1 Types

Cn extends C with two additional keywords that can be used as part of the declaration
qualifier for declarators, i.e. logically amend the type system [9]. These keywords are
multiplicity qualifiers and allow the programmer to specify a memory space in which a
declared object resides. The new keywords are:

– mono: for declaring an object in the mono domain (i.e. one copy exists in main
memory);

– poly: for declaring an object in the poly domain (i.e. one copy per PE in its local
memory).

The default multiplicity is mono. Wherever a multiplicity qualifier may be used, an
implicit mono is assumed, unless an explicit poly is provided. A consequence of this
is that all C programs are valid Cn programs, with the same semantics. Thus, Cn is a
superset of C (but see §5.2).

Basic types. Cn supports the same basic types as C. They can be used together with a
multiplicity qualifier to produce declarations (only one of the qualifiers can be used in
a basic type declaration). Some example declarations follow:

poly int i; // multiple copies in PE local (poly) memory
mono unsigned cu; // a single copy in main (mono) memory
unsigned long cs; // a single copy in main (mono) memory

Pointer types. The pointer types in Cn follow similar rules to those in C. Pointer
declarations consist of a base type and a pointer. The declaration on the left of the
asterisk represents the base type (the type of the object that the pointer points to). The
declaration on the right of the asterisk represents the pointer object itself. It is possible
to specify the multiplicity of either of these entities in the same way as const and
volatile work in C. For example:

poly int * poly sam; // poly pointer to poly int
poly int * frodo; // mono pointer to poly int
int * poly bilbo; // poly pointer to mono int

Thus, there are four different ways of declaring pointers with multiplicity qualifiers:

– mono pointer to mono object (e.g. mono int * mono);
– mono pointer to poly object (e.g. poly int * mono);
– poly pointer to mono data (e.g. mono int * poly);
– poly pointer to poly data (e.g. poly int * poly).

Revisiting SIMD Programming 37

Note that in the case of a poly pointer, multiple copies of the pointer exist, potentially
pointing to different locations.

As in C, pointers are used to access memory. The compiler allocates named poly
objects to the same address within each PE local memory. Thus, taking the address of a
named object (whether mono or poly) always yields a mono pointer.

Array types. The syntax for array declaration in Cn is similar to that in C. It is pos-
sible to use a multiplicity qualifier in an array declaration. Consider the declaration
poly int A[42];. The multiplicity qualifier applies only to the base type of the ar-
ray (i.e. to the type of array elements). This declaration will reserve a poly space for 42
integers at the same location on each PE. Similar to C, we can say that the array name
is coerced to the address of its first element, which is a mono pointer to poly object (e.g.
poly int * mono).

There are some additional restrictions when dealing with arrays, specifically with
array subscripting, discussed in §4.3.

Aggregate types. Similar to C, Cn distinguishes between declaration and definition of
objects. A declaration is where an object type is specified but no object of that type is
created, e.g. a struct type declaration. A definition is where an object of a particular type
is created, e.g. a variable definition. Structs and unions in Cn match their C equivalents,
the only difference being the type of fields one can specify inside a struct or union type
declaration.

Standard C allows essentially any declaration as a field, with the exception of stor-
age class qualifiers. Cn allows the same with the additional restriction that fields cannot
have multiplicity qualifiers. This is because a struct type declaration just specifies the
structure of memory. Memory is not allocated until an instance of that struct type is cre-
ated. Thus, putting a poly field in a struct declaration and then defining an instance of
that struct in the mono domain would result in having contradictory multiplicity spec-
ifications. (Similarly for a mono field in a struct instance defined in the poly domain.)
For example:

// legal struct declaration
struct _A {

int a;
float b;

};
poly struct _A kaiser;

// illegal struct declaration
struct _B {

poly int a; // illegal use of multiplicity
mono float b; // illegal use of multiplicity

};
mono struct _B king; // where should king.a go?
poly struct _B tsar; // where should tsar.b go?

Multiplicity qualifiers, however, can be used on the base type of pointers (otherwise
pointers to poly data could not be declared as fields). For example:

38 A. Lokhmotov et al.

union _C { // define a union
poly int * a;
mono int * poly * b;

};
poly union _C fred;
mono union _C barney;

In the declaration of fred, the field a is created as a poly pointer to a poly int
(poly int * poly) and b is created as a poly pointer to a poly pointer to a mono int
(mono int * poly * poly). In the declaration of barney, a is created as a mono
pointer to a poly int (poly int * mono) and b is created as a mono pointer to a poly
pointer to a mono int (mono int * poly * mono).

4.2 Expressions

Cn supports all the operators of C. Mono and poly objects can usually be used inter-
changeably in expressions (but see §4.3 for exceptions).

Note that the result of any expression involving a mono and a poly object invari-
ably has a poly type. Thus, mono objects are promoted to the poly domain in mixed
expressions. In the following example,

poly int x; int y; x = x + y;

where y is promoted to poly int before being added to (every copy of) x. (Techni-
cally, the promotion is done by broadcasting values from the mono register file to the
poly execution unit.)

4.3 Assignment Statements

Assignment within a domain (i.e. poly to poly, or mono to mono) is always legal and
has the obvious behaviour.

A mono value can also be assigned to a poly variable. In this case the same value is
assigned to every copy of the variable on each PE. For example, poly int x = 1;

results in (every copy of) x having the value of 1. (Again, the architecture supports such
assignments by broadcasting the mono value to the poly unit.)

It is not obvious, however, what should happen when assigning a poly to a mono, i.e.
when taking data from multiple copies of the poly variable and storing it in the single
mono variable. Therefore direct assignment from the poly domain to the mono domain
is disallowed in Cn.

Note that certain Cn expressions are disallowed, as otherwise they would require an
implicit data transfer from mono to poly memory. One such expression is dereferencing
of a poly pointer to mono data (e.g. mono int * poly). Attempting to dereference
such a pointer would result in poly data, but the data is stored in the mono domain and
would therefore need to be copied to poly memory. Since broadcasting can only send a
single mono value to the poly unit at a time, such a copy would involve expensive pro-
grammed I/O mechanisms. Therefore, allowing such dereferencing would conflict with
the design goal that the core language operations should be cheap. Thus, the compiler
reports dereferencing a poly pointer to mono data as an error.

Revisiting SIMD Programming 39

Since, following C, Cn treats x[i] as equivalent to *(x + i), it follows that index-
ing a mono array with a poly expression is also forbidden, because it would implicitly
dereference a poly pointer to mono data.

In all the cases when data transfers between mono and poly memories are required,
the programmer has to use memory copy routines from the standard Cn library.

4.4 Reduction Operations

Many parallel algorithms require reducing a vector of values to a single scalar value.
In addition to the core operations defined above, the Cn standard library provides sum,
times, and bit-wise operations defined for basic types for reducing a poly value into a
mono value. For example, on an array of n PEs,

poly float x; mono float y; ...
y = reduce_mono_sum(x);

means

y = x(0) + x(1) + ... + x(n-1);

where x(i) refers to the value of x on ith PE.
For some algorithms another form of reduction is useful: logically, a poly value is

reduced to an intermediate mono value which is then broadcast into a result poly value.
Thus,

poly float x, z; ...
z = reduce_poly_sum(x);

means

z(0) = ... = z(n-1) = x(0) + x(1) + ... + x(n-1);

Both forms can be efficiently implemented on the CSX using the inter-PE swazzle
path. The order in which the result is evaluated is unspecified.

4.5 Control Statements

The basic control flow constructs in Cn are the same as in C. Conditional expressions,
however, can be of mono or poly domain. Consider the if statement:

if(expression) { statement-list }

A mono expression for the condition affects both the mono and poly execution units.
If the expression is false, the statement list will be skipped entirely, and execution will
continue after the if statement.

A poly expression for the condition can be true on some PEs and false on others.
This is where the PE enable state (described in §2.1) comes in: all the PEs for which
the condition is false are disabled for the duration of executing the statement list. The
statement list is executed (even if all PEs are disabled by the condition), but any poly
statements (e.g. assignments to poly variables) have an affect only on the enabled PEs.
Mono statements inside a poly if, however, get executed irrespective of the conditions.
Consider the following example:

40 A. Lokhmotov et al.

poly int foo = 0; mono int bar = 1;
if(get_penum()%2 == 0) { // disable all odd PEs

foo = 1; // foo is 1 on even and 0 on odd PEs
bar = 2; // bar is 2

}

Effectively, a poly condition is invisible to any mono code inside that if statement.1

This language design choice may seem counterintuitive and is indeed a controversial
point in the design of SIMD languages, to which we return in §5.2.

A poly condition in an if..else statement implies that for the if-clause all the
PEs on which the condition evaluates to true are enabled, and the others are disabled.
Then, for the else-clause, the enable state of all the PEs is inverted: those PEs that
were enabled by the condition are disabled and vice-versa.

Conditional statements can be nested just as in C. Poly statements are only executed
on PEs when all the nested conditional expressions evaluate to true.

These rules, of course, dictate different compilation of conditional statements. Mono
conditional statements result in generating branch instructions, while poly conditional
statements result in generating poly instructions enabling and disabling PEs (enable
stack operations on the CSX; see §7 for more details).

Similar principles apply to loop constructs for, while and do..while. A loop with
a poly control expression executes until the loop condition is false on every PE. Note
that a poly loop can iterate zero times, so in that case, unlike the if statement, even
mono statements in its body will not be executed.

4.6 Functions

Multiplicity qualifiers can be specified for the return type of a function, as well as the
types of any arguments. We refer to a function as being mono or poly according to
whether its return type is mono or poly.

A return statement from a mono function behaves exactly as expected by transferring
control to the point after the call statement. A poly function does not actually return
control until the end of the function body. A return from a poly function works by
disabling the PEs which execute it. Other PEs execute the rest of the function code.
When the function returns, all PEs have their enable state restored to what it was on
entry. Note that all mono code in the function is always executed (unless branched over
by mono conditional statements).

5 Cn Design Rationale

5.1 Low-Level Abstraction

Early SIMD programming languages for the Illiac IV computer included Glypnir [10],
with syntax based on Algol 60, and CFD [11], based on Fortran. The main design
goal of these languages was “to produce a useful, reliable, and efficient programming

1 It way be worth noting that the block structure of code is still relevant. So, for example, any
mono declarations within the body of a poly conditional statement are local to that body.

Revisiting SIMD Programming 41

tool with a high probability of success” [10]. Given the state of compiler technology
in the early 1970s, the languages could not both be machine independent and satisfy
this goal.2 In addition to explicit means for specifying storage allocation and program
control as in Cn, these languages even provided means for accessing subwords and
registers.

Many vector processing languages have appeared since then, providing higher levels
of abstraction for array-based operations (e.g. Actus [12], Vector C [13], High Perfor-
mance Fortran [8], etc.). Unfortunately, such languages present greater complexity for
the implementors because of data alignment, storage allocation and communication is-
sues on SIMD machines (e.g. see [14,15]).

Cn builds on the C strength of “solving” most implementation efficiency problems
by leaving them to the programmers. While not the most desirable solution, it relieves
the programmers from solving the same problems using assembly language. In §6 we
argue that Cn can be seen as an intermediate representation for compiling from higher
level parallel languages.

5.2 Cn and Other SIMD Dialects of C

Cn is by no means the first C dialect for SIMD programming. Notable examples include
C* [16] for programming the Connection Machine models, MPL [17] for the MasPar
models, and 1DC (one-dimensional C) [18] for the IMAP models.

All these languages intentionally reflect their respective architectures. The unify-
ing theme is the use of a keyword to specify multiple instance variables (poly in C*,
plural in MPL, sep in 1DC). The language differences stem from the differences
between the architectures and design goals.

Communication. While the poly keyword implies the physical data distribution, C*
enshrines the viewpoint that no parallel version of C can abandon the uniform address
space model without giving up its claim to be a superset of C. Uniform memory means
that a PE can have a pointer p into the memory of another PE. For example, the state-
ment *p = x; means “send message x to a location pointed to by p”. Thus, C* relies
on pointers for interprocessor communication.

This C* feature is underpinned by Connection Machine’s key capability allowing any
PE to establish a connection with any other PE in the machine (via the global routing
mechanism or local meshes). Still, the programmer relies on the compiler writer’s abil-
ity to implement pointer-based communication efficiently. Perhaps, this is the reason
why, in contrast, MasPar’s MPL provides explicit communication operators, although
the MasPar has connection capabilities similar to the Connection Machine.

The IMAP architectures have a linear nearest neighbour interconnect, as does the
CSX. 1DC supports special operators for nearest neighbour communication, while Cn

relegates communication functions to the Cn standard library.

Dereferencing pointers. Even rejecting the pointer-based communication in C* does
not mean that the compiler will be able to optimise poorly written code; in particular,

2 Indeed, the compiler for Tranquil—the first Illiac IV language—was abandoned because of
implementation difficulties and lack of resources [10].

42 A. Lokhmotov et al.

code that makes a heavy use of costly DMA transfers between mono and poly mem-
ories. The Cn ban on dereferencing poly pointers to mono data (which would transfer
only several bytes at a time) aims to shut the door in front of the abusing programmers.
In contrast, MPL does not sacrifice convenience for efficiency and allows all pointer
operations.

Poly conditional statements. In §4.5, we discussed the behaviour of poly if state-
ments in Cn: even if the poly condition is false on every PE, the statement list is exe-
cuted regardless, including all mono statements in the list. This model of execution is
easy to implement on the CSX by inserting operations on the hardware enable stack
(see §7). The same model was used in MPL [19].

The designers of C* followed the other route by adopting the “Rule of Local Sup-
port” [16, §6.2]: if the poly condition is false on every PE, then the statement list is not
executed at all. The Rule of Local Support required extra implementation trouble but
preserved the usual model of a while loop in terms of if and goto statements. The C*
designers, nevertheless, admitted that their rule occasionally also caused inconvenience
and confusion.

Deciding on whether to preserve or to change the semantics of familiar statements
when extending a sequential language for parallelism is hard, and may even drive the
designers to a thought that designing a language from scratch is a better idea (e.g. see
the history of ZPL [4]). In the case of if statements, the solution does not need to
be that radical and could merely come as using different keywords in a more general
language supporting both execution models (for example, ifp for the Cn/MPL model
and ifm for the C* model).

6 Cn as Intermediate Language

SIMD array supercomputers went out of fashion in the early 1990s when clusters of
commodity computers proved to be more cost effective. Ironically, vector-style instruc-
tions reemerged in commodity processors under the name of SIMD (or multimedia)
extensions, such as Intel MMX/SSE and PowerPC AltiVec.

The principal difference between “real” (array) SIMD and vector extensions is that
the latter operate on data in long registers and do not have local memory attached to
each PE as in SIMD arrays. In terms of the Cn language, this means that it would be
inefficient (if not impossible) to use pointers to poly data when programming in Cn

for vector extensions. This is because it would not be straightforward to compile Cn

programs expressing memory operations that are not supported by the hardware.
We argue, however, that the Cn language can be regarded as a “portable assembly”

language for both SIMD and vector architectures. Given an architecture description,
high-level languages providing more abstract array-based operations can be translated
to Cn and then efficiently mapped to machine code by the Cn compiler.

For example, consider a Fortran 90 style statement B[0:959] = A[0:959]+42;

where A[] and B[] are arrays of floats. This statement loads 960 values from A, adds
42 to each, and stores 960 results to B. Suppose that the target architecture is a vector
machine with 96 elements per vector register, hence the statement parallelism needs to
be folded 10 times to fit the hardware by strip mining [20,15].

Revisiting SIMD Programming 43

For a vector machine, the declaration poly float va, vb; can be thought of as
defining two vector registers in a similar way as vector float vc; can be used to
define a (4-element) vector in the AltiVec API [21]. The vector statement can then be
strip-mined horizontally [15], resulting in:

const poly int me = get_penum(); // get PE number
mono float * poly pa = A + me;
mono float * poly pb = B + me;
for(int i = 0; i < 10; i++, pa += 96, pb += 96) {

va = *pa; // load 96-element vector
vb = va + 42;

*pb = vb; // store 96-element vector
}

(Note that here we have lifted the Cn ban on dereferencing poly pointers to mono data,
which is the artefact of distributed memory SIMD arrays.)

The same strategy works on a SIMD machine having 96 PEs: 10 vector indirect
loads (one on each iteration) are replaced with 10 DMA transfers from mono to poly
memory, 10 vector stores with 10 DMA transfers from poly to mono memory; each
transfer moves a single float to/from a PE. It is more efficient, however, to strip-mine
vertically [15], which in pseudo-vector notation can be written as:

poly float pA[10], pB[10];
pA[0:9] = A[10*me:10*me+9]; // DMA mono to poly
pB[0:9] = pA[0:9] + 42;
B[10*me:10*me+9] = pB[0:9]; // DMA poly to mono

This requires only two DMA transfers of 10 floats each. Given high DMA start-up
costs, vertical strip-mining is several times more efficient. Hence, the compiler should
favour the second form on SIMD machines. (This is a trivial example of the decisions
we referred to in §5.1 that the compiler needs to make to efficiently compile high-level
vector abstractions).

To summarise, Cn code can be seen as an intermediate language, from which tar-
get code can be generated. Once a Cn compiler is written and well-tuned, the qual-
ity of target code should principally depend on the ability of the (machine-description
driven) front-end to generate efficient intermediate code from a higher level parallel lan-
guage. Even if the front-end generates suboptimal intermediate code, the performance-
conscious programmer still has a fallback to the intermediate language, rather than to
assembly.

Cn has already been targeted from a subset of OpenMP [22]. We believe that Cn can
also be targeted from high-level data parallel libraries such as MSR Accelerator [23]
and memory hierarchy oriented languages such as Stanford Sequoia [24].

7 Cn Compiler Implementation

ClearSpeed has developed a Cn optimising compiler for the CSX architecture using
the CoSy compiler development framework [25]. Small modifications to the front-end

44 A. Lokhmotov et al.

were needed to support the multiplicity qualifiers in the source code. Each type is sup-
plemented with a flag indicating whether it is mono or poly. A special phase was written
to recognise poly conditional statements and transform them into a form of predicated
execution. For example, assuming that both x and y are in the poly domain,

if (y > 0) {
x = y;

}

becomes
enablestate = push(y > 0, enablestate);
x ?= y;
enablestate = pop(enablestate);

where the predicated assignment operator ?= assigns its rhs expression to the lhs loca-
tion only on those PEs where all the bits of the hardware enable stack (represented by
the variable enablestate) are 1.

Predicated execution requires careful rethinking of standard optimisations. For ex-
ample, the standard register allocation algorithm via coloring has to recognise that live-
ness of a virtual poly register is not simply implied by its def-use chain but is also a
function of the enable state. This is not, however, a new problem (e.g. see [26]).

7.1 Cn Compiler Performance

ClearSpeed has developed a number of interesting applications in Cn, including func-
tions from the molecular dynamics simulation package AMBER, Monte-Carlo option
pricing simulations, implementations of 2D and 3D FFTs, and others.

The Cn design choice of only including features that can be efficiently implemented
using standard compiler technology pays off handsomely, since the implementors can
concentrate their efforts on optimisations that the programmer expects the compiler to
get right. For example, Fig. 1 shows on 20 benchmarks the performance improvement
achieved by the version 3.0 of the Cn compiler over the version 2.51.

Much of the improvement comes from the work on the register allocator and other
optimisations becoming aware of poly variables. Particular optimisations, e.g. loop-
invariant code motion, have proved to benefit from the target processor’s ability to issue
forced poly instructions which are executed regardless of the enable state.

Code for the amber benchmark generated by the current version of the compiler
performs within 20% of hand-coded assembly. (No other similar data is available for
comparison, because it makes little sense to re-implement assembly programs in Cn,
other than to improve portability.)

8 Future Work and Conclusion

Programming in Cn tends to require the programmer to restructure programs to expose
the parallelism lost when writing in a sequential language. Essentially, the Cn program-
mer indicates a parallel loop. We believe it is possible to ease the programmer’s task
of annotating sequential C programs (but expressing parallel algorithms) with the poly
qualifier, if the programmer can assert certain properties.

Revisiting SIMD Programming 45

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

amber

amer_optio
n_pde_mono

amer_optio
n_pde_poly

asia
n_optio

n_mono

asia
n_optio

n_poly

asia
n_optio

n_ve
cto

r

blacks
ch

oles_
mono

blacks
ch

oles_
poly

blacks
ch

oles_
ve

cto
r

broadieglasse
rm

an_mono

broadieglasse
rm

an_poly

broadieglasse
rm

an_ve
cto

r

docki
ng_co

mpute

euro_optio
n

euro_optio
n_binom_mono

euro_optio
n_binom_poly

euro_optio
n_binom_ve

cto
r

logp

mandelbrot_poly

merse
nne_twiste

r

S
pe

ed
up

 (
de

ve
lo

pm
en

t v
s.

 2
.5

1)

Fig. 1. Performance improvement of code generated by the compiler version 3.0 over code gen-
erated by the compiler version 2.51

We are developing an auto-parallelising compiler module converting C code to valid
Cn code using programmer’s annotations based on the concept of delayed writes [27].
The resulting Cn code is then fed into the optimisation and code generation phases of
the Cn compiler.

ClearSpeed has developed a set of production quality tools targeting the CSX ar-
ray architecture, including an optimising compiler, assembler, linker and debugger, that
make software development in Cn a viable alternative to hand-coding in assembly as
loss in performance is far outweighed by the advantages of high-level language pro-
gramming.

References

1. Parhami, B.: SIMD machines: do they have a significant future? SIGARCH Comput. Archit.
News 23(4), 19–22 (1995)

2. Barnes, G.H., Brown, R.M., Kato, M., Kuck, D.J., Slotnick, D.L., Stokes, R.A.: The Illiac
IV computer. IEEE Trans. Computers C-17(8), 746–757 (1968)

3. ClearSpeed Technology: The CSX architecture, http://www.clearspeed.com/
4. Snyder, L.: The design and development of ZPL. In: Proc. of the third ACM SIGPLAN

conference on History of programming languages (HOPL III), pp. 8–1–8–37. ACM Press,
New York (2007)

5. Slotnick, D.: The conception and development of parallel processors—a personal memoir.
IEEE Annals of the History of Computing 4(1), 20–30 (1982)

http://www.clearspeed.com/

46 A. Lokhmotov et al.

6. Wilkes, M.V.: The lure of parallelism and its problems. In: Computer Perspectives. Morgan
Kaufmann, San Francisco (1995)

7. Snyder, L.: Type architecture, shared memory and the corollary of modest potential. Annual
Review of Computer Science 1, 289–317 (1986)

8. Kennedy, K., Koelbel, C., Zima, H.: The rise and fall of High Performance Fortran: an his-
torical object lesson. In: Proc. of the third ACM SIGPLAN conference on History of pro-
gramming languages (HOPL III), pp. 7–1–7–22. ACM Press, New York (2007)

9. American National Standards Institute: ANSI/ISO/IEC 9899-1999: Programming Languages
– C (1999)

10. Lawrie, D.H., Layman, T., Baer, D., Randal, J.M.: Glypnir—a programming language for
Illiac IV. Commun. ACM 18(3), 157–164 (1975)

11. Stevens Jr., K.: CFD—a Fortran-like language for the Illiac IV. SIGPLAN Not. 10(3), 72–76
(1975)

12. Perrott, R.H.: A language for array and vector processors. ACM Trans. Program. Lang.
Syst. 1(2), 177–195 (1979)

13. Li, K.C., Schwetman, H.: Vector C: a vector processing language. Journal of Parallel and
Distributed Computing 2(2), 132–169 (1985)

14. Knobe, K., Lukas, J.D., Steele Jr., G.L.: Data optimization: allocation of arrays to reduce
communication on SIMD machines. J. Parallel Distrib. Comput. 8(2), 102–118 (1990)

15. Weiss, M.: Strip mining on SIMD architectures. In: Proc. of the 5th International Conference
on Supercomputing (ICS), pp. 234–243. ACM Press, New York (1991)

16. Rose, J.R., Steele Jr., G.L.: C*: An extended C language for data parallel programming. In:
Proc. of the 2nd International Conference on Supercomputing (ICS), vol. 2, pp. 2–16 (1987)

17. MasPar Computer Corporation: MasPar Programming Language (ANSI C compatible MPL)
Reference Manual (1992)

18. Kyo, S., Okazaki, S., Arai, T.: An integrated memory array processor for embedded image
recognition systems. IEEE Trans. Computers 56(5), 622–634 (2007)

19. Christy, P.: Software to support massively parallel computing on the MasPar MP-1. In: Proc.
of the 35th IEEE Computer Society International Conference (Compcon Spring), pp. 29–33
(1990)

20. Allen, R., Kennedy, K.: Optimizing Compilers for Modern Architectures. Morgan Kauf-
mann, San Francisco (2002)

21. Freescale Semiconductor: AltiVec technology programming interface manual (1999)
22. Bradley, C., Gaster, B.R.: Exploiting loop-level parallelism for SIMD arrays using OpenMP.

In: Proc. of the 3rd International Workshop on OpenMP (IWOPM) (2007)
23. Tarditi, D., Puri, S., Oglesby, J.: Accelerator: using data parallelism to program GPUs for

general-purpose uses. In: Proc. of the 12th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS-XII), pp. 325–335. ACM
Press, New York (2006)

24. Fatahalian, K., Horn, D.R., Knight, T.J., Leem, L., Houston, M., Park, J.Y., Erez, M., Ren,
M., Aiken, A., Dally, W.J., Hanrahan, P.: Sequoia: programming the memory hierarchy. In:
Proc. of the 2006 ACM/IEEE Conference on Supercomputing (SC), pp. 83–92. ACM Press,
New York (2006)

25. ACE Associated Compiler Experts: The CoSy compiler development system,
http://www.ace.nl/

26. Kim, H.: Region-based register allocation for EPIC architectures. PhD thesis, Department of
Computer Science, New York University (2001)

27. Lokhmotov, A., Mycroft, A., Richards, A.: Delayed side-effects ease multi-core program-
ming. In: Kermarrec, A.-M., Bougé, L., Priol, T. (eds.) Euro-Par 2007. LNCS, vol. 4641.
Springer, Heidelberg (2007)

http://www.ace.nl/

Multidimensional Blocking in UPC

Christopher Barton1, Călin Caşcaval2, George Almasi2, Rahul Garg1,
José Nelson Amaral1, and Montse Farreras3

1 University of Alberta, Edmonton, Canada
2 IBM T.J. Watson Research Center

3 Universitat Politècnica de Catalunya
Barcelona Supercomputing Center

Abstract. Partitioned Global Address Space (PGAS) languages offer an attrac-
tive, high-productivity programming model for programming large-scale paral-
lel machines. PGAS languages, such as Unified Parallel C (UPC), combine the
simplicity of shared-memory programming with the efficiency of the message-
passing paradigm by allowing users control over the data layout. PGAS lan-
guages distinguish between private, shared-local, and shared-remote memory,
with shared-remote accesses typically much more expensive than shared-local
and private accesses, especially on distributed memory machines where shared-
remote access implies communication over a network.

In this paper we present a simple extension to the UPC language that allows
the programmer to block shared arrays in multiple dimensions. We claim that this
extension allows for better control of locality, and therefore performance, in the
language.

We describe an analysis that allows the compiler to distinguish between lo-
cal shared array accesses and remote shared array accesses. Local shared array
accesses are then transformed into direct memory accesses by the compiler, sav-
ing the overhead of a locality check at runtime. We present results to show that
locality analysis is able to significantly reduce the number of shared accesses.

1 Introduction

Partitioned Global Address Space (PGAS) languages, such as UPC [14], Co-Array For-
tran [10], and Titanium [16], extend existing languages (C, Fortran and Java, respec-
tively) with constructs to express parallelism and data distributions. They are based on
languages that have a large user base and therefore there is a small learning curve to
move codes to these new languages.

We have implemented several parallel algorithms — stencil computation and lin-
ear algebra operations such as matrix-vector and Cholesky factorization — in the UPC
programming language. During this effort we identified several issues with the current
language definition, such as: rudimentary support for data distributions (shared arrays
can be distributed only block cyclic), flat threading model (no ability to support subsets
of threads), and shortcomings in the collective definition (no collectives on subsets of
threads, no shared data allowed as target for collective operations, no concurrent partic-
ipation of a thread in multiple collectives). In addition, while implementing a compiler
and runtime system we found that naively translating all shared accesses to runtime

V. Adve, M.J. Garzarán, and P. Petersen (Eds.): LCPC 2007, LNCS 5234, pp. 47–62, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

48 C. Barton et al.

calls is prohibitively expensive. While the language supports block transfers and cast
operations that could alleviate some of the performance issues, it is more convenient to
address these problems through compiler optimizations.

Tackling some of these issues, this paper makes the following contributions:

– propose a new data distribution directive, called multidimensional blocking, that al-
lows the programmer to specify n-dimensional tiles for shared data (see Section 2);

– describe a compile-time algorithm to determine the locality of shared array ele-
ments and replace references that can be proven to be locally owned by the execut-
ing thread with direct memory accesses. This optimization reduces the overhead of
shared memory accesses and thus brings single thread performance relatively close
to serial implementations, thereby allowing the use of a scalable, heavier, runtime
implementation that supports large clusters of SMP machines (see Section 3);

– present several benchmarks that demonstrate the benefits of the multidimensional
blocking features and the performance results of the locality analysis; these perfor-
mance results were obtained on a cluster of SMP machines, which demonstrates
that the flat threading model can be mitigated through knowledge in the compiler
of the machine architecture (Section 5).

2 Multidimensional Blocking of UPC Arrays

In this section we propose an extension to the UPC language syntax to provide addi-
tional control over data distribution: tiled (or multiblocked) arrays. Tiled data structures
are used to enhance locality (and therefore performance) in a wide range of HPC ap-
plications [2]. Multiblocked arrays can help UPC programmers to better express these
types of applications, allowing the language to fulfill its promise of allowing both high
productivity and high performance. Also, having this data structure available in UPC
facilitates using library routines, such as BLAS [4], in C or Fortran that already make
use of tiled data structures.

Consider a simple stencil computation on a 2 dimensional array that calculates the
average of the four immediate neighbors of each element.

1 shared double A[M] [N] ;
2 . . .
3 f o r (i = 1 . .M−2, j = 1 . . N−2)
4 B[i] [j] = 0 . 2 5∗ (A[i −1][j]+A[i + 1] [j]+A[i] [j −1]+A[i] [j + 1]) ;

Since it has no data dependencies, this loop can be executed in parallel. However, the
naive declaration of A above yields suboptimal execution, because e.g. A[i-1][j]
will likely not be on the same UPC thread as A[i][j] and may require inter-node
communication to get to. A somewhat better solution allowed by UPC is a striped 2D
array distribution:

shared double [M*b] A[M][N];

M × b is the blocking factor of the array; that is, the array is allocated in contiguous
blocks of this size. This however, limits parallelism to N

b processors and causes O(1
b)

remote array accesses. By contrast, a tiled layout provides M×N
b2 parallelism and O(1

b2)
of the accesses are remote. Typical MPI implementations of stencil computation tile

Multidimensional Blocking in UPC 49

the array and exchange “border regions” between neighbors before each iteration. This
approach is also possible in UPC:

struct block { double tile[b][b]; };
shared block A[M/b][N/b];

However, the declaration above complicates the source code because two levels of
indexing are needed for each access. We cannot pretend that A is a simple array any-
more. We propose a language extension that can declare a tiled layout for a shared array,
as follows:

shared <type> [b0][b1]...[bn] A[d0][d1] ... [dn];

Array A is an n-dimensional tiled (or “multi-blocked”) array with each tile being an
array of dimensions [b0][b1]...[bn]. Tiles are understood to be contiguous in memory.

2.1 UPC Array Layout

To describe the layout of multiblocked arrays in UPC, we first need to discuss conven-
tional shared arrays. A UPC array declared as below:

shared [b] <type> A[d0][d1]...[dn];

is distributed in memory in a block-cyclic manner with blocking factor b. Given an
array index v = v0, v1, ...vn−1, to locate element A[v] we first calculate the linearized
row-major index (as we would in C):

L(v) = v0 ×
n−1∏
j=1

dj + v1 ×
n−1∏
j=2

dj + ... + vn−1 (1)

Block-cyclic layout is based on this linearized index. We calculate the UPC thread on
which array element A[v] resides. Within the local storage of this thread the array is
kept as a collection of blocks. The course of an array location is the block number in
which the element resides; the phase is its location within the block.⎧⎪⎪⎨

⎪⎪⎩
thread(A,v) ::=

⌊
L(v)

b

⌋
mod T

phase(A,v) ::= L(v) mod b

course(A,v) ::=
⌊

L(v)
b×T

⌋
Multiblocked arrays: The goal is to extend UPC syntax to declare tiled arrays while
minimizing the impact on language semantics. The internal representation of multi-
blocked arrays should not differ too much from that of standard UPC arrays. Con-
sider a multiblocked array A with dimensions D = {d0, d1, ...dn} and blocking factors

B = {b0, b1, ...bn}. This array would be allocated in k =
∏n−1

i=0

⌈
di

bi

⌉
blocks (or tiles)

of b =
∏n−1

i=0 bi elements. We continue to use the concepts of thread, course and phase
to find array elements. However, for multiblocked arrays two linearized indices must

50 C. Barton et al.

be computed: one to find the block and another to find an element’s location within a
block. Note the similarity of Equations 2 and 3 to Equation 1:

Lin−block(v) =
n−1∑
k=0

((vk mod bk) ×
n−1∏

j=k+1

bj) (2)

L(v) =
n−1∑
k=0

(
⌊

vk

bk

⌋
×

n−1∏
j=k+1

⌈
dj

bj

⌉
) (3)

The phase of a multiblocked array element is its linearized in-block index. The
course and thread are calculated with a cyclic distribution of the block index, as in
the case of regular UPC arrays.⎧⎪⎪⎨

⎪⎪⎩
thread(A,v) ::=

⌊
L(v)∏n−1
i=0 bi

⌋
mod T

phase(A,v) ::= Lin−block(v)

course(A,v) ::=
⌊

L(v)∏n−1
i=0 bi×T

⌋ (4)

Array sizes that are non-multiples of blocking factors: The blocking factors of multi-
blocked arrays are not required to divide their respective dimensions, just as blocking
factors of regular UPC arrays are not required to divide the array’s dimension(s). Such
arrays are padded in every dimension to allow for correct index calculation.

2.2 Multiblocked Arrays and UPC Pointer Arithmetic

The address of any UPC array element (even remote ones) can be taken with the upc
addressof function or with the familiar & operator. The result is called a pointer-to-
shared, and it is a reference to a memory location somewhere within the space of the
running UPC application. In our implementation a pointer-to-shared identifies the base
array as well as the thread, course and phase of an element in that array.

UPC pointers-to-shared behave much like pointers in C. They can be incremented,
dereferenced, compared etc. The familiar pointer operators (*, &, ++) are available. A
series of increments on a pointer-to-shared will cause it to traverse a UPC shared array
in row-major order.

Pointers-to-shared can also used to point to multiblocked arrays. Users can expect
pointer arithmetic and operators to work on multiblocked arrays just like on regular
UPC shared arrays.

Affinity, casting and dynamic allocation of multiblocked arrays: Multiblocked ar-
rays can support affinity tests (similar to the upc threadof function) and type casts
the same way regular UPC arrays do.

Dynamic allocation of UPC shared arrays can also be extended to multiblocked
arrays. UPC primitives like upc all alloc always return shared variables of type
shared void *; multiblocked arrays can be allocated with such primitives as long
as they are cast to the proper type.

Multidimensional Blocking in UPC 51

2.3 Implementation Issues

Pointers and dynamic allocation of arrays: Our current implementation supports only
statically allocated multiblocked arrays. Dynamically allocated multiblocked arrays
could be obtained by casting dynamically allocated data to a shared multiblocked type,
making dynamic multiblocked arrays a function of correct casting and multiblocked
pointer arithmetic. While correct multiblocked pointer arithmetic is not conceptually
difficult, implementation is not simple: to traverse a multiblocked array correctly, a
pointer-to-shared will have to have access to all blocking factors of the shared type.

Processor tiling: Another limitation of the current implementation is related to the
cyclic distribution of blocks over UPC threads. An alternative would be to specify a
processor grid to distribute blocks over. Equation 3 would have to be suitably modified
to take thread distribution into consideration. We have not implemented this yet in the
UPC runtime system, although performance results presented later in the paper clearly
show the need for it.

Hybrid memory layout: Our UPC runtime implementation is capable of running in
mixed multithreaded/multinode environments. In such an environment locality is inter-
preted on a per-node basis, but array layouts have to be on a per-UPC-thread basis to be
compatible with the specification. This is true both for regular and multiblocked arrays.

3 Locality Analysis for Multi-dimensional Blocking Factors

This section describes a compile-time analysis for multi-dimensional blocking factors
in UPC shared arrays. The analysis considers loop nests that contain accesses to UPC
shared arrays and finds shared array references that are provably local (on the same
UPC thread) or shared local (on the same node in shared memory, but on different UPC
threads). All other shared array references are potentially remote (reachable only via
inter-node communication).

The analysis enables the compiler to refactor the loop nest to separate local and
remote accesses. Local and shared local accesses cause the compiler to generate simple
memory references; remote variable accesses are resolved through the runtime with a
significant remote access overhead. We consider locality analysis crucial to obtaining
good performance with UPC.

In Figure 1 we present a loop nest that will be used as an example for our analysis.
In this form the shared array element in the affinity test — the last parameter in the
upc forall statement — is formed by the current loop-nest index, while the single
element referenced in the loop body has a displacement, with respect to the affinity
expression, specified by the distance vector k = [k0, k1, . . . , kn−1]. Any loop nest in
which the index for each dimension, both in the affinity test and in the array reference,
is an affine expression containing only the index in the corresponding dimension can be
transformed to this cannonical form.1 Table 1 summarizes the notation used throughout

1 An example of a loop nest that cannot be transformed to this cannonical form is a two-level nest
accessing a two-dimensional array in which either the affinity test or the reference contains an
expression such as A[v0 + v1][v1].

52 C. Barton et al.

shared [b0][b1]· · ·[bk−1] int A[d0][d1]· · · [dk−1];
for(v0=0 ; v0 < d0 − k0 ; v0++)

for(v1=0 ; v1 < d1 − k1 ; v1++){
· · ·
upc forall(vn−1=0 ; vn−1 <dn−1−kn−1 ; vn−1++ ; &A[v0][v1]. . .[vn−1])

A[v0 + k0][v1 + k1]. . .[vn−1 + kn−1] = v0 ∗ v1 ∗ . . . ∗ vn−1;
}

Fig. 1. Multi-level loop nest that accesses a multi-dimensional array in UPC

Table 1. Expressions used to compute the node ID that each element A[v] of array A belongs to

Ref Expression Description
1 n number of dimensions
2 bi blocking factor in dimension i
3 di array size in dimension i
4 vi position index in dimension i
5 v = [v0, v1, . . . , vn−1] Index of an array element
6 T number of threads
7 t number of threads per node
8 Bi =

⌊
vi
bi

⌋
Block index in dimension i

9 L(v) =
∑n−1

i=0 Bi ×
∏n−1

j=i+1

⌈ dj

bj

⌉
Linearized block index

10 L′(v) = L(v)% T Normalized linearized block index

11 N (v) =
⌊

L′(v)
t

⌋
Node ID

12 O(v) = L(v)% t Block offset within a node

this section and the expressions used by the locality analysis to compute the locality of
array elements. The goal of the locality analysis is to compute symbolically the node
ID of each shared reference in the loop and compare it to the node ID of the affinity
expression. All references having a node ID equal to the affinity expression’s node ID
are local.

Locality analysis is done on the n-dimensional blocks of the multiblocked arrays
present in the loop. For conventional UPC shared arrays declared with a blocking factor
b, the analysis uses blocking factors of 1 in all dimensions except the last dimension,
where b is used. The insight of the analysis is that a block shifted by a displacement
vector k can span at most two threads along each dimension. Therefore locality can
only change in one place in this dimension. We call this place the cut.

Once the cut is determined, our analysis tests the locality of the elements at the 2n

corners of the block. If a corner is found to be local, all the elements in the region from
the corner up to the cuts in each dimension are also local.

Definition 1. The value of a cut in dimension i, Cuti, is the distance, measured in
number of elements, between the corner of a block and the first transition between
nodes on that dimension.

Consider the two-level loop nest that accesses a two-dimensional blocked array shown
in Figure 2. The layout of the array used in the loop is shown to the right of the code.

Multidimensional Blocking in UPC 53

1 /∗ 8 t h r e a d s and 2 t h r e a d s / node ∗ /
2

3 shared [2] [3] i n t A [8] [8] ;
4

5 f o r (v0 = 0 ; v0 <7 ; v0 ++){
6 u p c f o r a l l (v1 = 0 ; v1 <6 ; v1 ++; &A[v0] [v1]){
7 A[v0 + 1] [v1 + 2] = v0∗v1 ;
8 }
9 }

1

2

3

4

5

6

7

0

v0

v1

3
T6 T6 T

TTT

6

666

1
T2 T2 T

TTT

2

222

1
T3 T3 T

TTT

3

333
2

T4 T4 T

TTT

4

444

T5 T5 T

TTT

5

555

3
T7 T7 T

TTT

7

777
0

T0 T0 T

TTT

0

000

T1 T1 T

TTT

1

111
0 1

T3 T3 T

TTT

3

333

0
T2 T2 T

TT

2

22

T1 T1 T

TT

1

11
0

T0 T0 T

TTT

0

000

1 2 3 4 5 6 70 8

1
T2

2

1T

Fig. 2. A two-dimensional array node example

Thin lines separate the elements of the array. Large bold numbers inside each block of
2×3 elements denote the node ID to which the block is mapped. Thick lines separate
nodes from each other. The grey area in the array represents all elements that are ref-
erenced by iterations of the forall loop that are affine with &A[0][0]; cuts in this
iteration space are determined by the thick lines (node boundaries).

Finding the cuts: In general, for dimensions i = 0 to n − 2 the value of the cut in that
dimension is given by the following expression.

Cuti = bi − ki% bi (5)

Thus in the example Cut0 = 1, which means that the only possible change of locality
value happens between the first and second row of the block being accessed.

The cuts in the last dimension of the array are not necessarily the same for each
corner. In Figure 2, for the top corners the cut is 4 but for the bottom corners the cut is
1. This happens when there are multiple colocated UPC threads in a node (in a hybrid
setup); because the blocks in a node may “wrap around” the rows in the array.

Thus the analysis has to compute two separate values for the last cut: one for the
upper corners and a second one for the lower corners. Upper and Lower refers to the
last dimension in a multi-dimensional array. Let k′ = [k0 + b0 − 1, k1, . . . , kn−1]. The
expression for the last cut in the upper corner is as follows:

CutUpper
n−1 = (t − O(k)) × bn−1 − kn−1% bn−1 (6)

CutLower
n−1 = (t − O(k′)) × bn−1 − kn−1% bn−1 (7)

where t is the number of threads per node.
When there is a single thread per node (i.e. t = 1), the normalized linearized block

index is zero, and thus equations 6 and 7 simplify to equation 5.

Axiom 3.0.1. Given an upc forall loop with affinity test AffTest = A(v) and a
shared array reference Ref = A(v + k), this reference is local if and only if
N (AffTest) = N (Ref)

54 C. Barton et al.

Theorem 1. Let A be an n-dimensional shared array with dimensions d0, d1, . . . , dn−1

and with blocking dimensions b0, b1, . . . , bn−1. Let w = v0, v1, . . . , vp, . . . , vn−1 and
y = v0, v1, . . . , vp +1, . . . vn−1 be two vectors such that A(w) and A(y) are elements
of A. Let BOff = O(v0, v1, . . . , 0) be the block offset for the first element in the block
in dimension n − 1. Let

v′i =
{

vi% bi − ki% bi if i �= n − 1
(vi + BOff × bi)% (bi × t) Otherwise. (8)

if v′p �= Cutp − 1 then N (w) = N (y).

Proof. We only present the proof for the case p �= n − 1 here. The proof for the case
p = n − 1 follows a similar reasoning but is more involved because it has to take into
account the block offset for the first element in dimension n − 1.

From the expressions in Table 1 the expression for the node id of elements w and y
are given by:

N (w) =
⌊

L(w)% T
t

⌋
and N (y) =

⌊
L(y)% T

t

⌋
(9)

The linearized block index for w and y can be written as:

L(w)=
n−1∑
i=0

⌊
vi

bi

⌋
×

n−1∏
j=i+1

⌈
dj

bj

⌉
(10)

L(y)= L(w) +
(⌊

vp + 1
bp

⌋
−

⌊
vp

bp

⌋)
×

n−1∏
j=p+1

⌈
dj

bj

⌉
(11)

From equations 5 and 8:

v′p = Cutp − 1 (12)

vp% bp − kp% bp = bp − kp% bp − 1 (13)

From equation 13, the condition v′p �= Cutp − 1 implies that vp% bp �= bp − 1, which
implies that vp% bp ≤ bp − 2. Therefore:⌊

vp + 1
bp

⌋
=

⌊
vp

bp

⌋
(14)

Substituting this result in equation 11 results that L(y) = L(w) and therefore N(w) =
N(y).

Theorem 1 is the theoretical foundation of locality analysis based on corners and cuts.
It establishes that the only place within a block where the node ID may change is at the
cut. The key is that the elements A(w) and A(y) are adjacent elements of A.

4 Identifying Local Shared Accesses

In this section we present an algorithm that splits a loop nest into a number of smaller
regions in the iteration space, such that in each region, each shared reference is known

Multidimensional Blocking in UPC 55

to be local or known to be remote. In a region, if a shared reference is determined to be
local then the reference is privatized otherwise a call to the runtime is inserted.

To determine such regions, our analysis reasons about the positions of various shared
references occuring in the loop nest relative to the affinity test expression. For each
region, we keep track of a position relative to the affinity test shared reference. For each
shared reference in the region, we also keep track of position of each reference relative
to the region.

We start with the original loop nest as a single region. This region is analyzed and
the cuts are computed. The region is then split according to the cuts generated. The
new generated regions are again analyzed and split recursively until no more cuts are
required. When all of the regions have been generated, we use the position of the region,
and the position of the shared reference within the region to determine if it is local or
remote. All shared references that are local are privatized. Figure 3 provides a sample

1 shared [5] [5] i n t A[2 0] [2 0] ;
2 i n t main () {
3 i n t i , j ;
4 f o r (i =0 ; i < 1 9 ; i ++)
5 u p c f o r a l l (j =0 ; j < 2 0 ; j ++; &A[i] [j]) {
6 A[i + 1] [j] = MYTHREAD;
7 }
8 }

Fig. 3. Example upc forall loop containing a shared reference

loop nest containing a upc forall loop and a shared array access. We will assume
the example is compiled for a machine containing 2 nodes and will run with 8 UPC
threads, creating a thread group size of 4. In this scenario, the shared array access on
Line 6 will be local for the first four rows of every block owned by a thread T and
remote for the remaining row. The LOCALITYANALYSIS algorithm in Figure 4 begins
by collecting all top-level loop nests that contain a candidate upc forall loop. To
be a candidate for locality analysis, a upc forall loop must be normalized (lower
bound begins at 0 and the increment is 1) and must use a pointer-to-shared argument for
the affinity test. The algorithm then proceeds to analyze each loop nest independently
(Step 2).

Phase 1 of the per-loopnest analysis algorithm finds and collects the upc forall
loop lforall . The affinity statement used in lforall , Astmt is also obtained. Finally the
COLLECTSHAREDREFERENCES procedure collects all candidate shared references in
the specified upc forall loop. In order to be a candidate for locality analysis, a
shared reference must have the same blocking factor as the shared reference used in
the affinity test. The compiler must also be able to compute the displacement vector
k = ref shared − affinityStatement for the shared reference, the vectorized difference
between the indices of the reference and of the affinity statement.

In the example in Figure 3 the loop nest on Line 4 is collected as a candidate for
locality analysis. The shared reference on Line 6 is collected as a candidate for locality
analysis; the computed displacement vector is [1,0].

Phase 2 of the algorithm restructures the loop nest by splitting the iteration space of
each loop into regions where the locality of shared references is known. Each region has

56 C. Barton et al.

LOCALITYANALYSIS(Procedurep)
1. NestSet ← GATHERFORALLLOOPNESTS(p)
2. foreach loop nest L in NestSet
Phase 1 - Gather Candidate Shared References
3. lforall ← upc forall loop found in loop nest L
4. nestDepth ← depth of L
5. Astmt ← Affinity statement used in lforall
6. SharedRefList ← COLLECTSHAREDREFERENCES(lforall, Astmt)
Phase 2 - Restructure Loop Nest
7. FirstRegion ← INITIALIZEREGION(L)
8. LR ← FirstRegion
9. while LR not empty
10. R ← Pop head of LR
11. CutList ← GENERATECUTLIST(R,SharedRefList)
12. nestLevel ← R.nestLevel
13. if nestLevel < nestDepth − 1
14. LR ← LR∪ GENERATENEWREGIONS(R,CutList)
15. else
16. Lfinal

R ← Lfinal
R ∪ GENERATENEWREGIONS(R,CutList)

17. endif
18. end while
Phase 3 - Identify Local Accesses and Privatize
19. foreach R in Lfinal

R

20. foreach ref shared in SharedRefList
21. refPosition ←COMPUTEPOSITION(ref shared, R)
22. nodeId ← COMPUTENODEID(ref shared, refPosition)
23. if nodeId = 0
24. PRIVATIZESHAREDREFERENCE(ref shared)
25. endfor

Fig. 4. Locality analysis for UPC shared references

a statement list associated with it, i.e. the lexicographically ordered list of statements
as they appear in the program. Each region is also associated with a position in the
iteration space of the loops containing the region.

In the example in Figure 3 the first region, R0 contains the statements on Lines 5 to
7. The position of R0 is 0, since the iteration space of the outermost loop contains the
location 0. Once initialized, the region is placed into a list of regions, LR (Step 8).

The algorithm iterates through all regions in LR. For each region, a list of cuts is
computed based on the shared references collected in Phase 1. The cut represents the
transition between a local access and a remote access in the given region. The GEN-
ERATECUTLIST algorithm first determines the loop-variant induction variable iv in R
that is used in refshared. The use of iv identifies the dimension in which to obtain the
blocking factor and displacement when computing the cut. Depending on the dimension
of the induction variable, either Equation 5 or Equations 6 and 7 are used to compute
the cuts.

Multidimensional Blocking in UPC 57

GENERATECUTLIST sorts all cuts in ascending order. Duplicate cuts and cuts out-
side the iteration space of the region (Cut = 0 or Cut ≥ b) are discarded. Finally, the
current region is cut into multiple iteration ranges, based on the cut list, using the GEN-
ERATENEWREGION algorithm. Newly created regions are separated by an if statement
containing a cut expression of the form iv%b < Cut (the modulo is necessary since a
cut is always in the middle of a block).

Step 13 determines if the region R is located in the innermost loop in the current
loop nest (i.e. there are no other loops inside of R). If R contains innermost statements
the regions generated by GENERATENEWREGIONS are placed in a separate list of final
regions. Lfinal

R . This ensures that at the end of Phase 2, the loop nest has been refactored
into several iteration ranges and final statement lists (representing the innermost loops)
are collected for use in Phase 3.

1 shared [5] [5] i n t A[2 0] [2 0] ;
2

3 i n t main () {
4 i n t i , j ;
5 f o r (i =0 ; i < 1 9 ; i ++)
6 i f ((i % 5) < 4) {
7 u p c f o r a l l (j =0 ; j < 2 0 ; j ++;
8 &A[i] [j]) {
9 A[i + 1] [j] = MYTHREAD;

10 }
11 }
12 e l s e {
13 u p c f o r a l l (j =0 ; j < 2 0 ; j ++;
14 &A[i] [j]) {
15 A[i + 1] [j] = MYTHREAD;
16 }
17 }
18 }

Fig. 5. Example after first cut

1 shared [5] [5] i n t A[2 0] [2 0] ;
2 i n t main () {
3 i n t i , j ;
4 f o r (i =0 ; i < 1 9 ; i ++)
5 i f ((i % 5) < 4) {
6 u p c f o r a l l (j =0 ; j < 2 0 ; j ++;
7 &A[i] [j]) {
8 o f f s e t = ComputeOffs e t (i , j) ;
9 base A+ o f f s e t = MYTHREAD;

10 }
11 }
12 e l s e {
13 u p c f o r a l l (j =0 ; j < 2 0 ; j ++;
14 &A[i] [j]) {
15 A[i + 1] [j] = MYTHREAD;
16 }
17 }
18 }

Fig. 6. Example after final code generation

The second phase iterates through the example in Figure 3 three times. The first
region, R0 and the CutList = 4, calculated by GENERATECUTLIST are passed in
and the intermediate code shown in Figure 5 is generated. GENERATENEWREGIONS

inserts the if ((i \% 5) < 4) branch and replicates the statements in region R0. Two new
regions, R1 containing statements between lines 8 to 10 and R2, containing lines 14 to
16, are created and added to the NewList. The respective positions associated with R1

and R2 are [0] and [4], respectively.
The new regions, R1 and R2 are popped off of the region list LR in order. Neither

region requires any cuts. GENERATENEWREGIONS copies R1 and R2 into R3 and R4

respectively. Since R1 and R2 represent the innermost loops in the nest, the new regions
R3 and R4 will be placed into the final regions list (Step 16 in Figure 4). The position
of region R3 is [0,0] and the position of region R4 is [4,0].

Phase 3 of the algorithm uses the position information stored in each of the final
regions to compute the position of each shared reference in that region (Step 21). This
information is then used to compute the node ID of the shared reference using the equa-
tions presented in Section 3 (Step 22). All shared references with a node ID of 0 are

58 C. Barton et al.

local and are privatized (Step 24). The shared reference refR3
shared located in R3 is com-

puted to have a position of [1, 0] based on the position of R3,[0, 0], and the displacement
vector of refshared, [1, 0]. The node ID for this position is 0 and thus refR3

shared is lo-
cal. The shared reference refR4

shared is computed to have a position of [5, 0] using the
position for region R4, [4, 0]. The node ID for this position is 1, and thus this reference
is remote. Figure 6 shows the final code that is generated.

5 Experimental Evaluation

In this section we propose to evaluate the claims we have made in the paper: namely
the usefulness of multiblocking and locality analysis. For our evaluation platform we
used 4 nodes of an IBM SquadronTMcluster. Each node has 8 SMP Power5 processors
running at 1.9 GHz and 16 GBytes of memory.

Cholesky factorization and Matrix multiply: Cholesky factorization was written to
showcase multi-blocked arrays. The tiled layout allows our implementation to take di-
rect advantage of the ESSL [5] library. The code is patterned after the LAPACK [4]
dpotrf implementation and adds up to 53 lines of text. To illustrate the compactness
of the code, we reproduce one of the two subroutines used, distributed symmetric rank-k
update, below.

1 vo id update mb (shared double [B] [B] A[N] [N] , i n t co l0 , i n t c o l 1) {
2 double a l o c a l [B∗B] , b l o c a l [B∗B] ;
3 u p c f o r a l l (i n t i i = c o l 1 ; i i <N; i i +=B; cont inue)
4 u p c f o r a l l (i n t j j = c o l 1 ; j j <i i +B ; j j +=B; &A[i i] [j j]) {
5 upc memget (a l o c a l , &A[i i] [c o l 0] , s i z e o f (double)∗B∗B) ;
6 upc memget (b l o c a l , &A[j j] [c o l 0] , s i z e o f (double)∗B∗B) ;
7 dgemm (”T” , ”N” , &n , &m, &p , &a lpha , b l o c a l , &B, a l o c a l ,
8 &B, &be ta , (vo id ∗)&A[i i] [j j] , &B) ;
9 }

10 }

The matrix multiply benchmark is written in a very similar fashion. It amounts to little
more than a (serial) k loop around the update function above with slightly differ-
ent loop bounds and three shared array arguments A, B and C instead of only one. It
amounts to 20 lines of code. Without question, multiblocking allows compact code
representation. The benchmark numbers presented in Figures 7 show mediocre scaling
and performance “hiccups”, which we attribute to communication overhead and poor
communication patterns. Clearly, multiblocking syntax needs to be extended with a dis-
tribution directive. Also, the UPC language could use better collective communication
primitives; but that is in the scope of a future paper.

Dense matrix-vector multiplication: This benchmark multiplies a two-dimensional
shared matrix with a one-dimensional shared vector and places the result in a one-
dimensional shared vector. The objective of this benchmark is to measure the speed
difference between compiler-privatized and unprivatized accesses.

The matrix, declared of size 14400 × 14400, the vector as well the result vector are
all blocked using single dimensional blocking. The blocking factors are equivalent to
the [*] declarations. Since the vector is shared, the entire vector is first copied into a

Multidimensional Blocking in UPC 59

Cholesky Performance (GFlops)
1 node 2 nodes 3 nodes 4 nodes

1 TPN 5.37 10.11 15.43 19.63
2 TPN 9.62 16.19 28.64 35.41
4 TPN 14.98 23.03 45.43 59.14
6 TPN 18.73 35.29 52.57 57.8
8 TPN 26.65 23.55 59.83 74.14

Matrix Multiply Performance (GFlops)
1 node 2 nodes 3 nodes 4 nodes

1 TPN 5.94 11.30 16.17 22.24
2 TPN 11.76 21.41 29.82 42.20
4 TPN 23.24 39.18 51.05 73.44
6 TPN 31.19 54.51 66.17 89.55
8 TPN 44.20 63.24 79.00 99.71

1 2 4 6 8
0

10

20

30

40

50

60

70

80
1 node
2 nodes

3 nodes
4 nodes

Threads

GF
lop

s

1 2 4 6 8
0

10

20

30

40

50

60

70

80

90

100
1 node
2 nodes
3 nodes
4 nodes

threads

G
Fl

op
s

Fig. 7. Performance of multiblocked Cholesky and matrix multiply as a function of participating
nodes and threads per node (TPN). Theoretical peak: 6.9 GFlops × threads × nodes.

Matrix-vector multiply
Naive 1 node 2 nodes 3 nodes 4 nodes
1 TPN 27.55 16.57 14.13 9.21
2 TPN 16.57 8.59 7.22 4.32
4 TPN 8.57 4.3 3.63 2.18
6 TPN 7.2 3.62 2.43 1.89
8 TPN 4.33 2.2 1.96 1.28

Opt. 1 node 2 nodes 3 nodes 4 nodes
1 TPN 2.08 1.22 0.78 0.6
2 TPN 1.7 0.85 0.63 0.43
4 TPN 0.85 0.44 0.33 0.23
6 TPN 0.65 0.35 0.25 0.19
8 TPN 0.44 0.23 0.22 0.17

Stencil benchmark
Naive 1 node 2 nodes 3 nodes 4 nodes

1 thread 35.64 24.59 19.04 13.41
2 threads 18.85 13.56 9.82 7.9
4 threads 9.8 13.64 5.58 8.9
6 threads 10.85 8.98 7.53 6.12
8 threads 4.9 5.58 9.52 3.66

Opt. 1 node 2 nodes 3 nodes 4 nodes
1 thread 0.30 1.10 1.41 0.74

2 threads 0.73 0.72 0.75 1.06
4 threads 0.44 1.19 0.39 0.84
6 threads 0.32 0.30 1.11 0.75
8 threads 0.22 0.63 1.07 1.02

Fig. 8. Runtime in seconds for the matrix-vector multiplication benchmark (left) and for the sten-
cil benchmark (right). The tables on the top show naive execution times; the tables on the bottom
reflect compiler-optimized runtimes.

local buffer using upc memget. The matrix-vector multiplication itself is a simple 2
level nest with the outer loop being upc forall . The address of the result vector
element is used as the affinity test expression.

Results presented in Figure 8 (left side) confirm that compiler-privatized accesses
are about an order of magnitude faster than unprivatized accesses.

60 C. Barton et al.

5-point Stencil: This benchmark computes the average of a 4 immediate neighbors
and the point itself at every point in a 2 dimensional matrix and stores the result in a
different matrix of same size. The benchmark requires one original data matrix and one
result matrix. 2-d blocking was used to maximize the locality. The matrix size used for
the experiments was 5760× 5760. Results, presented in Figure 8 (right side), show that
in this case, too, run time is substantially reduced by privatization.

6 Related Work

There is a significant body of work on data distributions in the context of High Per-
formance Fortran (HPF) and other data parallel languages. Numerous researchers have
tackled the issue of optimizing communication on distributed memory architectures by
either finding an appropriate distribution onto processors [1,9] or by determining a com-
putation schedule that minimizes the number of message transfers [7,12]. By contrast
to these works, we do not try to optimize the communication, but rather allow the pro-
grammer to specify at very high level an appropriate distribution and then eliminate the
need for communication all together using compiler analysis. We do not attempt to re-
structure or improve the data placement of threads to processors in order to minimize
communication. While these optimizations are certainly possible in our compiler, we
leave them as future work.

The locality analysis presented in this paper is also similar to array privatization
[13,11]. However, array privatization relies on the compiler to provide local copies
and/or copy-in and copy-out semantics for all privatized elements. In our approach,
once ownership is determined, private elements are directly accessed. In future work
we will determine if there is sufficient reuse in UPC programs to overcome the cost of
copying array elements into private memory.

Tiled and block distributions are useful for many linear algebra and scientific codes
[2]. HPF-1 provided the ability to choose a data distribution independently in each dime-
sion if desired. Beside HPF, several other languages, such as ZPL [3] and X10 [15]
provide them as standard distributions supported by the language. In addition, libraries
such as the Hierarichical Tiled Arrays library [2] provide tiled distributions for data de-
composition. ScaLAPACK [6], a widely used parallel library provides a 2 dimensional
block-cyclic distribution for matrices which allows the placement of blocks over a 2-
dimensional processor grid. The distribution used by ScaLAPACK is therefore more
general than the distribution presented in the this paper.

7 Conclusions and Future Work

In this paper we presented a language extension for UPC shared arrays that provides
fine control over array data layout. This extensions allows the programmer to obtain
better performance while simplifying the expression of computations, in particular ma-
trix computations. An added benefit is the ability to integrate existing libraries written
in C and Fortran, which require specific memory layouts. We also presented a compile-
time analysis and optimization of shared memory accesses. Using this analysis, the
compiler is able to reduce the overheads introduced by the runtime system.

Multidimensional Blocking in UPC 61

A number of issues still remain to be resolved, both in the UPC language and more
importantly in our implementation. For multiblocked arrays, we believe that adding
processor tiling will increase the programmer’s ability to write codes that scale to large
numbers of processors. Defining a set of collectives that are optimized for the UPC pro-
gramming model will also address several scalability issues, such as the ones occuring
in the LU Factorization and the High Performance Linpack kernel [8].

Our current compiler implementation suffers from several shortcomings. In particu-
lar, several loop optimizations are disabled in the presence of upc forall loops. These
limitations are reflected in the results presented in this paper, where the baseline C
compiler offers a higher single thread performance compared to the UPC compiler.

Acknowledgements

This material is based upon work supported in part by the Defense Advanced Research
Projects Agency under its Agreement No. HR0011-07-9-0002. This work has also been
supported by the Ministry of Education of Spain under contract TIN2007-60625. We
also want to thank Philip Luk and Ettore Tiotto for their help with the IBM xlUPC
compiler.

References

1. Ayguade, E., Garcia, J., Girones, M., Labarta, J., Torres, J., Valero, M.: Detecting and us-
ing affinity in an automatic data distribution tool. In: Languages and Compilers for Parallel
Computing, pp. 61–75 (1994)

2. Bikshandi, G., Guo, J., Hoeflinger, D., Almási, G., Fraguela, B.B., Garzarán, M.J., Padua,
D.A., von Praun, C.: Programming for parallelism and locality with hierarchically tiled ar-
rays. In: PPOPP, pp. 48–57 (2006)

3. Chamberlain, B.L., Choi, S.-E., Lewis, E.C., Lin, C., Snyder, L., Weathersby, D.: ZPL: A
machine independent programming language for parallel computers. Software Engineer-
ing 26(3), 197–211 (2000)

4. Dongarra, J.J., Du Croz, J., Hammarling, S., Hanson, R.J.: An extended set of FORTRAN
Basic Linear Algebra Subprograms. ACM Transactions on Mathematical Software 14(1),
1–17 (1988)

5. ESSL User Guide,
http://www-03.ibm.com/systems/p/software/essl.html

6. Blackford, L.S., et al.: ScaLAPACK: a linear algebra library for message-passing comput-
ers. In: Proceedings of the Eighth SIAM Conference on Parallel Processing for Scientific
Computing (Minneapolis, MN, 1997) (electronic), Philadelphia, PA, USA, p. 15. Society for
Industrial and Applied Mathematics (1997)

7. Gupta, M., Schonberg, E., Srinivasan, H.: A unified framework for optimizing communica-
tion in data-parallel programs. IEEE Transactions on Parallel and Distributed Systems 7(7),
689–704 (1996)

8. HPL Algorithm description,
http://www.netlib.org/benchmark/hpl/algorithm.html

9. Kremer, U.: Automatic data layout for distributed memory machines. Technical Report
TR96-261, 14 (1996)

http://www-03.ibm.com/systems/p/software/essl.html
http://www.netlib.org/benchmark/hpl/algorithm.html

62 C. Barton et al.

10. Numrich, R.W., Reid, J.: Co-array fortran for parallel programming. ACM Fortran Fo-
rum 17(2), 1–31 (1998)

11. Paek, Y., Navarro, A.G., Zapata, E.L., Padua, D.A.: Parallelization of benchmarks for scal-
able shared-memory multiprocessors. In: IEEE PACT, p. 401 (1998)

12. Ponnusamy, R., Saltz, J.H., Choudhary, A.N., Hwang, Y.-S., Fox, G.: Runtime support and
compilation methods for user-specified irregular data distributions. IEEE Transactions on
Parallel and Distributed Systems 6(8), 815–831 (1995)

13. Tu, P., Padua, D.A.: Automatic array privatization. In: Compiler Optimizations for Scalable
Parallel Systems Languages, pp. 247–284 (2001)

14. UPC Language Specification, V1.2 (May 2005)
15. The X10 programming language (2004), http://x10.sourceforge.net
16. Yelick, K., Semenzato, L., Pike, G., Miyamoto, C., Liblit, B., Krishnamurthy, A., Hilfinger,

P., Graham, S., Gay, D., Colella, P., Aiken, A.: Titanium: A high-performance java dialect.
Concurrency: Practice and Experience 10(11-13) (September-November 1998)

http://x10.sourceforge.net

An Experimental Evaluation of the New

OpenMP Tasking Model

Eduard Ayguadé1, Alejandro Duran1, Jay Hoeflinger2, Federico Massaioli3,
and Xavier Teruel1

1 BSC-UPC
2 Intel

3 CASPUR

Abstract. The OpenMP standard was conceived to parallelize dense
array-based applications, and it has achieved much success with that.
Recently, a novel tasking proposal to handle unstructured parallelism in
OpenMP has been submitted to the OpenMP 3.0 Language Commit-
tee. We tested its expressiveness and flexibility, using it to parallelize a
number of examples from a variety of different application areas. Fur-
thermore, we checked whether the model can be implemented efficiently,
evaluating the performance of an experimental implementation of the
tasking proposal on an SGI Altix 4700, and comparing it to the perfor-
mance achieved with Intel’s Workqueueing model and other worksharing
alternatives currently available in OpenMP 2.5. We conclude that the
new OpenMP tasks allow the expression of parallelism for a broad range
of applications and that they will not hamper application performance.

1 Introduction

OpenMP grew out of the need to standardize the directive languages of several
vendors in the 1990s. It was structured around parallel loops and was meant to
handle dense numerical applications. The simplicity of its original interface, the
use of a shared memory model, and the fact that the parallelism of a program
is expressed in directives that are loosely-coupled to the code, all have helped
OpenMP become well-accepted today. However, the sophistication of parallel
programmers has grown in the last 10 years since OpenMP was introduced, and
the complexity of their applications is increasing. Therefore, OpenMP is in the
process of adding a tasking model to address this new programming landscape.
The new directives allow the user to identify units of independent work, leaving
the decisions of how and when to execute them to the runtime system.

In this paper, we have attempted to evaluate this new tasking model. We
wanted to know how the new tasking model compared to traditional OpenMP
worksharing and the existing Intel workqueueing model, both in terms of expres-
sivity and performance. In order to evaluate expressivity, we have parallelized a
number of problems across a wide range of application domains, using the tasking
proposal. Performance evaluation has been done on a prototype implementation

V. Adve, M.J. Garzarán, and P. Petersen (Eds.): LCPC 2007, LNCS 5234, pp. 63–77, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

64 E. Ayguadé et al.

1 #pragma omp paral lel pr i va t e (p)
2 {
3 #pragma omp for
4 for (i =0; i< n l i s t s ; i++) {
5 p = l i s t h e a d s [i] ;
6 while (p) {
7 #pragma omp task

8 p roc e s s (p)
9 p=next (p) ;

10 }
11 }
12 }

Fig. 1. Parallel pointer chasing on mul-
tiple lists using task

1 void t r a v e r s e (node ∗p , bool post)
2 {
3 i f (p−> l e f t)
4 #pragma omp task

5 t r a v e r s e (p−>l e f t , post) ;
6 i f (p−>r i gh t)
7 #pragma omp task

8 t r a v e r s e (p−>r ight , post) ;
9 i f (post) { /∗ p o s t o r d e r ! ∗/

10 #pragma omp taskwait

11 }
12 p roc e s s (p) ;
13 }

Fig. 2. Parallel depth-first tree
traversal

of the tasking model. Performance results must be treated as preliminary, al-
though we have validated the performance of our implementation against the
performance of the commercial Intel workqueueing model implementation[1].

2 Motivation and Related Work

The task parallelism proposal under consideration by the OpenMP Language
committee [2] gives programmers a way to express patterns of concurrency that
do not match the worksharing constructs defined in the current OpenMP 2.5
specification.The proposal addresses common operations like complex, possibly
recursive, data structure traversal, and situations which could easily cause load
imbalance. The efficient parallelization of these algorithms using the 2.5 OpenMP
standard is not impossible, but requires extensive program changes, such as
run-time data structure transformations. This implies significant hand coding
and run-time overhead, reducing the productivity that is typical of OpenMP
programming[3].

Figure 1 illustrates the use of the new omp task1 construct from the proposal.
It creates a new flow of execution, corresponding to the construct’s structured
block. This flow of execution is concurrent to the rest of the work in the parallel
region, but its execution can be performed only by a thread from the current
team. Notice that this behavior is different from that of worksharing constructs,
which are cooperatively executed by the existing team of threads. Execution of
the task region does not necessarily start immediately, but can be deferred until
the runtime schedules it.

The p pointer variable used inside the tasks in Figure 1 is implicitly deter-
mined firstprivate, i.e. copy constructed at task creation from the original copies
used by each thread to iterate through the lists. This default was adopted in
the proposal to balance performance, safety of use, and convenience for the pro-
grammer. It can be altered using the standard OpenMP data scoping clauses.
1 This paper will express all code in C/C++, but the tasking proposal includes the

equivalent directives in Fortran.

An Experimental Evaluation of the New OpenMP Tasking Model 65

The new #pragma omp taskwait construct used in Figure 1 suspends the
current execution flow until all tasks it generated have been completed. The
semantics of the existing barrier construct is extended to synchronize for com-
pletion of all generated tasks in the team.

For a programming language extension to be successful, it has to be useful,
and must be checked for expressiveness and productivity. Are the directives able
to describe explicit concurrency in the problem? Do data scoping rules, defaults
and clauses match the real programmers’ needs? Do common use cases exist
that the extension does not fulfill, forcing the programmer to add lines of code
to fill the gap? The two examples above, while illustrative, involve very basic
algorithms. They cannot be considered representative of a real application kernel.

In principle, the more concurrency that can be expressed in the source code,
the more the compiler is able to deliver parallelism. However, factors like subtle
side effects of data scoping, or even missing features, could hamper the actual
level of parallelism which can be achieved at run-time. Moreover, parallelism per
se does not automatically imply good performance. The semantics of a directive
or clause can have unforeseen impact on object code or runtime overheads. In a
language extension process, this aspect should also be checked thoroughly, with
respect to the existing standard and to competing models.

The suitability of the current OpenMP standard to express irregular forms
of parallelism was already investigated in the fields of dense linear algebra [4,5],
adaptive mesh refinement [6], and agent-based models [7].

The Intel workqueueing model [8] was the first attempt to add dynamic task
generation to OpenMP. The model, available as a proprietary extension in In-
tel compilers, allows hierarchical generation of tasks by the nesting of taskq
constructs. Synchronization of descendant tasks is controlled by means of the
default barrier at the end of taskq constructs. The implementation exhibits
some overhead problems [7] and other performance issues [9].

In our choice of the application kernels to test drive the OpenMP tasking pro-
posal, we were also inspired by the classification of different application domains
proposed in [10], which addresses a much broader range of computations than
traditional in the HPC field.

3 Programming with OpenMP Tasks

In this section we describe all the problems we have parallelized with the new
task proposal. We have worked on applications across a wide range of domains
(linear algebra, sparse algebra, servers, branch and bound, etc) to test the expres-
siveness of the proposal. Some of the applications (multisort, fft and queens) are
originally from the Cilk project[11], some others (pairwise alignment, connected
components and floorplan) come from the Application Kernel Matrix project
from Cray[12] and two (sparseLU and user interface) have been developed by
us. These kernels were not chosen because they were the best representatives of
their class but because they represented a challenge for the current 2.5 OpenMP
standard and were publicly available.

66 E. Ayguadé et al.

We have divided them into three categories. First were those applications that
could already be easily parallelized with current OpenMP worksharing but where
the use of tasks allows the expression of additional parallelism. Second were
those applications which require the use of nested parallelism to be parallelized
by the current standard. Nested parallelism is an optional feature and it is not
always well supported. Third were those applications which would require a
great amount of effort by the programmer to parallelize with OpenMP 2.5 (e.g.
by programming their own tasks).

3.1 Worksharing Versus Tasking

SparseLU. The sparseLU kernel computes an LU matrix factorization. The
matrix is organized in blocks that may not be allocated. Due to the sparse-
ness of the matrix, a lot of imbalance exists. This is particularly true for the
the bmod phase (see Figure 3). SparseLU can be parallelized with the current
worksharing directives (using an OpenMP for with dynamic scheduling for loops
on lines 10, 15 and 21 or 23). For the bmod phase we have two options: paral-
lelize the outer (line 21) or the inner loop (line 23). If the outer loop is paral-
lelized, the overhead is lower but the imbalance is greater. On the other hand, if
the inner loop is parallelized the iterations are smaller which allows a dynamic
schedule to have better balance but the overhead of the worksharing is much
higher.

1 int sparseLU () {
2 int i i , j j , kk ;
3#pragma omp paral lel
4#pragma omp single nowait
5 for (kk=0; kk<NB; kk++) {
6 lu0 (A[kk] [kk]) ;
7 /∗ fwd ph a s e ∗/
8 for (j j=kk+1; j j <NB; j j ++)
9 i f (A[kk] [j j] != NULL)

10 #pragma omp task

11 fwd (A[kk] [kk] , A[kk] [j j]) ;
12 /∗ b d i v p h a s e ∗/
13 for (i i=kk+1; i i <NB; i i ++)
14 i f (A[i i] [kk] != NULL)
15 #pragma omp task

16 bdiv (A[kk] [kk] , A[i i] [kk]) ;
17 #pragma omp taskwait

18 /∗ bmod pha s e ∗/
19 for (i i=kk+1; i i <NB; i i ++)
20 i f (A[i i] [kk] != NULL)
21 for (j j=kk+1; j j <NB; j j++)
22 i f (A[kk] [j j] != NULL)
23 #pragma omp task

24 {
25 i f (A[i i] [j j]==NULL) A[i i] [j j]= a l l o c a t e c l e an b l o c k () ;
26 bmod(A[i i] [kk] , A[kk] [j j] , A[i i] [j j]) ;
27 }
28 #pragma omp taskwait

29 }
30 }

Fig. 3. Main code of SparseLU with OpenMP tasks

An Experimental Evaluation of the New OpenMP Tasking Model 67

Using tasks, first we only create work for non-empty matrix blocks. We also
create smaller units of work in the bmod phase with an overhead similar to the
outer loop parallelization. This reduces the load imbalance problems.

It is interesting to note that, if the proposed extension included mechanisms
to express dependencies among tasks, it would be possible to express additional
parallelism that exists between tasks created in lines 12 and 17 and tasks created
in line 25. Also it would be possible to express the parallelism that exists across
consecutive iterations of the kk loop.

Protein pairwise alignment. This application aligns all protein sequences
from an input file against every other sequence. The alignments are scored and
the best score for each pair is output as a result. The scoring method is a full
dynamic programming algorithm. It uses a weight matrix to score mismatches,
and assigns penalties for opening and extending gaps. It uses the recursive Myers
and Miller algorithm to align sequences.

The outermost loop can be parallelized, but the loop is heavily unbalanced,
although this can be partially mitigated with dynamic scheduling. Another prob-
lem is that the number of iterations is too small to generate enough work when
the number of threads is large. Also, the loops of the different passes (forward
pass, reverse pass, diff and tracepath) can also be parallelized but this paral-
lelization is much finer so it has higher overhead.

We used OpenMP tasks to exploit the inner loop in conjunction with the
outer loop. Note that the tasks are nested inside an OpenMP for worksharing
construct. This breaks iterations into smaller pieces, thus increasing the amount
of parallel work but at lower cost than an inner loop parallelization because they
can be excuted inmediately.

1#pragma omp for
2 for (s i = 0 ; s i < nseqs ; s i++) {
3 l en1 = compute sequence length (s i +1);
4

5 /∗ compa re t o t h e o t h e r s e q u e n c e s ∗/
6 for (s j = s i + 1 ; s j < nseqs ; s j++) {
7 #pragma omp task

8 {
9 l en2 = compute sequence length (s j +1);

10 c ompute s c o r e pena l t i e s (. . .) ;
11 f orward pass (. . .) ;
12 r e ve r s e p a s s (. . .) ;
13 d i f f (. . .) ;
14 mm score = tracepath (. . .) ;
15 i f (l en1 == 0 | | l en2 == 0) mm score = 0 . 0 ;
16 else mm score /= (double) MIN(len1 , l en2) ;
17

18 #pragma omp cr i t i c a l
19 p r i n t s c o r e () ;
20 }
21 }
22 }

Fig. 4. Main code of the pairwise aligment with tasks

68 E. Ayguadé et al.

3.2 Nested Parallelism Versus Tasking

Floorplan. The Floorplan kernel computes the optimal floorplan distribution of
a number of cells. The algorithm is a recursive branch and bound algorithm. The
parallelization is straight forward (see figure 5). We hierarchically generate tasks
for each branch of the solution space. But this parallelization has one caveat. In
these kind of algorithms (and others as well) the programmer needs to copy the
partial solution up to the moment to the new parallel branches (i.e. tasks). Due
to the nature of C arrays and pointers, the size of it becomes unknown across
function calls and the data scoping clauses are unable to perform a copy on their
own. To ensure that the original state does not disappear before it is copied, a
task barrier is added at the end of the function. Other possible solutions would
be to copy the array into the parent task stack and then capture its value or
allocate it in heap memory and free it at the end of the child task. In all these
solutions, the programmer must take special care.

Multisort, FFT and Strassen. Multisort is a variation of the ordinary merge-
sort. It sorts a random permutation of n 32-bit numbers with a fast parallel
sorting algorithm by dividing an array of elements in half, sorting each half

1 void add c e l l (int id , coor FOOTPRINT, ibrd BOARD, struct c e l l ∗CELLS) {
2 int i , j , nn , area ; ib rd board ; coor f oo tp r i n t , NWS[DMAX] ;
3

4 for (i = 0 ; i < CELLS[id] . n ; i++) {
5 nn = c ompu t e p o s s i b l e l o c a t i o n s (id , i , NWS, CELLS) ;
6 /∗ f o r a l l p o s s i b l e l o c a t i o n s ∗/
7 for (j = 0 ; j < nn ; j++) {
8#pragma omp task pr i va t e (board , f oo tp r in t , area) \
9 shared (FOOTPRINT,BOARD,CELLS)

10 { /∗ copy p a r e n t s t a t e ∗/
11 struct c e l l c e l l s [N+1] ;
12 memcpy(c e l l s ,CELLS, s izeof (struct c e l l)∗ (N+1));
13 memcpy(board , BOARD, s izeof (ibrd)) ;
14

15 c ompute c e l l e x t en t (c e l l s , id ,NWS, j) ;
16

17 /∗ i f t h e c e l l c a nno t be l a y e d down , p r u n e s e a r c h ∗/
18 i f (! lay down (id , board , c e l l s)) {
19 goto end ;
20 }
21 area = compute new footpr int (f oo tp r i n t ,FOOTPRINT, c e l l s [id]) ;
22

23 /∗ i f l a s t c e l l ∗/
24 i f (c e l l s [id] . next == 0) {
25 i f (area < MIN AREA)
26 #pragma omp cr i t i ca l
27 i f (area < MIN AREA) s av e b e s t s o l u t i o n () ;
28 } else i f (area < MIN AREA)
29 /∗ o n l y c o n t i n u e i f a r e a i s s m a l l e r t o b e s t a r ea , o t h e r w i s e p r u n e ∗/
30 a dd c e l l (c e l l s [id] . next , f oo tp r i n t , board , c e l l s) ;
31 end : ;
32 }
33 }
34 }
35 #pragma omp taskwait

36 }

Fig. 5. C code for the Floorplan kernel with OpenMP tasks

An Experimental Evaluation of the New OpenMP Tasking Model 69

recursively, and then merging the sorted halves with a parallel divide-and-
conquer method rather than the conventional serial merge. When the array is
too small, a serial quicksort is used so the task granularity is not too small.
To avoid the overhead of quicksort, an insertion sort is used for arrays below a
threshold of 20 elements.

The parallelization with tasks is straight forward and makes use of a few task
and taskgroup directives (see figure 6), the latter being the structured form of
the taskwait construct introduced in section 2.

FFT computes the one-dimensional Fast Fourier Transform of a vector of n
complex values using the Cooley-Tukey algorithm. Strassen’s algorithm for mul-
tiplication of large dense matrices uses hierarchical decomposition of a matrix.
The structure of the parallelization of these two kernels is almost identical to
the one used in multisort, so we will omit it.

N Queens problem. This program, which uses a backtracking search algo-
rithm, computes all solutions of the n-queens problem, whose objective is to find
a placement for n queens on an n x n chessboard such that none of the queens
attacks any other.

In this application, tasks are nested dynamically inside each other. As in the
case of floorplan, the state needs to be copied into the newly created tasks so
we need to introduce additional synchronizations (in the form of taskgroup) in
order for the original state to be alive when the tasks start so they can copy it.

1 void s o r t (ELM ∗ low , ELM ∗tmp , long s i z e) {
2 i f (s i z e < qu i c k s i z e) {
3 /∗ q u i c k s o r t when r e a c h s i z e t h r e s h o l d ∗/
4 qu i ck so r t (low , low + s i z e − 1) ;
5 return ;
6 }
7 quarte r = s i z e / 4 ;
8

9 A = low ; tmpA = tmp ;
10 B = A + quarte r ; tmpB = tmpA + quarte r ;
11 C = B + quarte r ; tmpC = tmpB + quarte r ;
12 D = C + quarte r ; tmpD = tmpC + quarte r ;
13

14 #pragma omp taskgroup {
15 #pragma omp task

16 s o r t (A, tmpA, quarte r) ;
17 #pragma omp task

18 s o r t (B, tmpB, quarte r) ;
19 #pragma omp task

20 s o r t (C, tmpC, quarte r) ;
21 #pragma omp task

22 s o r t (D, tmpD, s i z e − 3 ∗ quarte r) ;
23 }
24 #pragma omp taskgroup {
25 #pragma omp task

26 merge (A, A+quarter −1, B, B+quarter −1, tmpA) ;
27 #pragma omp task

28 merge (C, C+quarter −1, D, low+s i z e −1, tmpC) ;
29 }
30 merge (tmpA, tmpC−1, tmpC, tmpA+s i z e −1, A) ;
31 }

Fig. 6. Sort function using OpenMP tasks

70 E. Ayguadé et al.

Another issue is the need to count all the solutions found by different tasks.
One approach is to surround the accumulation with a critical directive but this
would cause a lot of contention. To avoid it, we used threadprivate variables
that are reduced within a critical directive to the global variable at the end
of the parallel region.

Concom (Connected Components). The concom program finds all the
connected components of a graph. It uses a depth first search starting from all
the nodes of the graph. Every node visited is marked and not visited again.

The parallelization with tasks involves just four directives: a parallel directive,
a single directive, a task directive and a critical directive. This is a clear example
of how well tasks map into tree-like traversals.

3.3 Almost Impossible in OpenMP 2.5

Web server. We used tasks to parallelize a small web server called Boa. In
this application, there is a lot of parallelism, as each client request to the server
can be processed in parallel with minimal synchronizations (only update of log
files and statistical counters). The unstructured nature of the requests makes it
very difficult to parallelize without using tasks.

On the other hand, obtaining a parallel version with tasks requires just a
handful of directives, as shown in figure 8. Basically, each time a request is
ready, a new task is created for it.

1 void CC (int i , int cc) {
2 int j , n ;
3 /∗ i f node ha s n o t been v i s i t e d ∗/
4 i f (! v i s i t e d [i]) {
5 /∗ add node t o c u r r e n t component ∗/
6 add to component (i , cc) ; /∗ omp c r i t i c a l i n s i d e ∗/
7

8 /∗ add each n e i g h b o r ’ s s u b t r e e t o t h e c u r r e n t component ∗/
9 for (j = 0 ; j < nodes [i] . n ; j++) {

10 n = nodes [i] . ne ighbor [j] ;
11 #pragma omp task

12 CC(n , cc) ;
13 }
14 }
15 }
16

17 void main () {
18 i n i t g raph () ;
19 cc = 0 ;
20 /∗ f o r a l l n o d e s . . . u n v i s i t e d n od e s s t a r t a new component ∗/
21 for (i = 0 ; i < NN; i++)
22 i f (! v i s i t e d [i]) {
23 #pragma omp paral lel
24 #pragma omp single
25 CC(i , cc) ;
26 cc++;
27 }
28

29 }

Fig. 7. Connected components code with OpenMP tasks

An Experimental Evaluation of the New OpenMP Tasking Model 71

1#pragma omp paral lel
2#pragma omp single nowait
3 while (! end) {
4 proc e s s s i g n a l s (i f any)
5 f o r e ach r eque s t from the blocked queue {
6 i f (r e que s t dependences are met) {
7 ex t rac t from the blocked queue
8 #pragma omp task

9 s e r v e r e qu e s t (r e que s t) ;
10 }
11 }
12 i f (new connect ion) {
13 a c c e p t i t () ;
14 #pragma omp task

15 s e r v e r equ e s t (new connect ion) ;
16 }
17 s e l e c t () ;
18 }

Fig. 8. Boa webserver main loop with OpenMp tasks

The important performance metric for this application is response time. In the
proposed OpenMP tasking model, threads are allowed to switch from the current
task to a different one. This task switching is needed to avoid starvation, and pre-
vent overload of internal runtime data structures when the number of generated
tasks overwhelms the number of threads in the current team. The implementa-
tion is allowed to insert implicit switching points in a task region, wherever it
finds appropriate. The taskyield construct inserts an explicit switching point,
giving programmers full control. The experimental implementation we used in
our tests is not aggressive in inserting implicit switching points. To improve the
performance of the Web server, we inserted a taskyield construct inside the
serve request function so that no request is starved.

User Interface. We developed a small kernel that simulates the behavior of
user interfaces (UI). In this application, the objective of using parallelism is
to obtain a lower response time rather than higher performance (although, of
course, higher performance never hurts). Our UI has three possible operations,
which are common to most user interfaces: start some work unit, list current
ongoing work units and their status, and cancel an existing work unit.

The work units map directly into tasks (as can be seen in Figure 9). The
thread executing the single construct will keep executing it indefinitely. To be
able to communicate between the interface and the work units, the programmer
needs to add new data structures. We found it difficult to free these structures
from within the task because it could easily lead to race conditions (e.g. free
the structure while listing current work units). We decided to just mark them
to be freed by the main thread when it knows that no tasks are using it. In
practice, this might not always be possible and complex synchronizations may
be needed.

We also used the taskyield directive to avoid starvation.

72 E. Ayguadé et al.

1 void Work : : exec () {
2 while (! end) {
3 // do some amount o f work
4 #pragma omp taskyield

5 }
6 }
7

8 void s t a r t work (. . .) {
9 Work ∗work = new Work (. . .) ;

10 l i s t o f w o r k s . push back (work) ;
11 #pragma omp task

12 {
13 work−>exec () ;
14 work−>d i e () ;
15 }
16 gc () ;
17 }
18

19 void ui () {
20 . . .
21 i f (u se r i npu t == START WORK) sta r t work (. . .) ;
22 }
23

24 void main (int argc , char ∗∗ argv) {
25 #pragma omp paral lel
26 #pragma omp single nowait
27 ui () ;
28 }

Fig. 9. Simplified code for a user interface with OpenMP tasks

4 Evaluation

4.1 The Prototype Implementation

In order to test the proposal in terms of expressiveness and performance, we
have developed our own implementation of the proposed tasking model. We
developed the prototype on top of a research OpenMP compiler (source-to-source
restructuring tool) and runtime infrastructure [13].

The implementation uses execution units, that are managed through different
execution queues (usually one global queue and one local queue for each thread
used by the application). The library offers different services (fork/join, syn-
chronize, dependence control, environment queries, . . .) that can provide the
worksharing and structured parallelism expressed by the OpenMP 2.5 standard.
We added several services to the library to give support to the task scheme.
The most important change in the library was the offering of a new scope of
execution that allows the execution of independent units of work that can be
deferred, but still bound to the thread team (the concept of task, see section 2).

When the library finds a task directive, it is able to decide (according to in-
ternal parameters: maximum depth level in task hierarchy, maximum number
of tasks or maximum number of tasks by thread) whether to execute it imme-
diately or create a work unit that will be queued and managed through the
runtime scheduler. This new feature is provided by adding a new set of queues:

An Experimental Evaluation of the New OpenMP Tasking Model 73

team queues. The scheduler algorithm is modified in order to look for new work
in the local, team and global queues respectively.

Once the task is first executed by a thread, and if the task has suspend/resume
points, we can expect two different behaviors. First, the task could be bound to
that thread (so, it can only be executed by that thread) and second, the task
is not attached to any thread and can be executed by any other thread of the
team. The library offers the possibility to move a task from the team queues to
the local queues. This ability covers the requirements of the untied clause of
the task construct, which allows a task suspended by one thread to be resumed
by a different one.

The synchronization construct is provided through task counters that keep
track of the number of tasks which were created in the current scope (the current
scope can be a task or taskgroup construct). Each task has in its own structure
with a successor field that points to the counter it must decrement.

4.2 Evaluation Methodology

We have already shown the flexibility of the new tasking proposal, but what
about its performance? To determine this, we have evaluated the performance
of the runtime prototype against other options.

We have run all the previous benchmarks but we do not include the results for
the webserver (due to a lack of the proper network environment) and the simple-
ui (because it has an interactive behavior). For each application we have tried
each possible OpenMP version: a single level of parallelism (labeled OpenMP
worksharing), multiple levels of parallelism (labeled OpenMP nested) and with
OpenMP tasks. For those applications that could be parallelized with Intel’s
taskqueues, we also evaluated them with taskqueues.

Table 1 summarizes the different input parameters and the experiments run
for each application.

Table 1. Input parameters for each application

Application Input parameters Experiments
strassen Matrix size of 1280x1280 nested, tasks, taskqueues
multisort Array of 32M of integers nested, tasks, taskqueues
fft Array of 32M of complex

numbers
nested, tasks, taskqueues

queens Size of the board is 14x14. nested, tasks, taskqueues
alignment 100 sequences worksharing, nested, tasks
floorplan 20 cells nested, tasks, taskqueues
concom 500000 graph nodes,

100000 edges
nested, tasks, taskqueues

sparseLU Sparse matrix of 50 blocks
of 100x100

worksharing, nested,
tasks, taskqueues

74 E. Ayguadé et al.

We compiled the codes with taskqueues and nested parellelism with Intel’s icc
compiler version 9.1 at the default optimization level. The versions using tasks
use our OpenMP source-to-source compiler and runtime prototype implementa-
tion, using icc as the backend compiler. The speedup of all versions is computed,
using as a baseline the serial version of each kernel. We used Intel’s icc compiler
to compile the serial version.

All the benchmarks have been evaluated on an SGI Altix 4700 with 128 pro-
cessors, although they were run on a cpuset comprising a subset of the machine
to avoid interference with other running applications.

4.3 Results

In figure 10 we show the speedup for all the kernels (except the concom) with the
different evaluated versions: OpenMP worksharing, OpenMP nested, OpenMP
tasks and Intel’s taskqueues. We do not show the results of the concom kernel
because the slowdowns prevented us from running the experiments due to time
constraints. These slowdowns were not only affecting the OpenMP task version
but also the OpenMP nested and Intel’s taskqueues. The main reason behind
the slowdown is granularity. The tasks (or parallel regions in the nested case)
are so fine grained that it is impossible to scale without aggregrating them. That
is something that currently none of the models supports.

For a small number of threads (up to 4) we see that the versions using the
new OpenMP tasks perform about the same as those using current OpenMP
(worksharing and nested versions). But, as we increase the number of processors
the task version scales much better, always improving over the other versions
except for the multisort kernel, which has the same performance. These improve-
ments are due to different factors, depending on the kernel: better load balance
(sparseLU, alignment, queens, fft, strassen and floorplan), greater amount of
parallel work (alignment and sparseLU) and less overhead (alignment). Overall,
we can see that the new task proposal has the potential to benefit a wide range
of application domains.

When we compare how the current prototype performs against a well estab-
lished implementation of tasking, Intel’s taskqueue, we can see that in most
of the kernels the obtained speedup is almost the same and in a few cases
(sparseLU and floorplan), even better. Only in two of them (fft and strassen)
does taskqueue perform better, and even then, not by a large amount.

Taking into account that the prototype implementation has not been well
tuned, we think that the results show that the new model will allow codes to
obtain at least the performance of Intel’s taskqueue and is even more flexible.

5 Suggestions for Future Work

While the performance and flexibility of the new OpenMP tasking model seem
good, there is still room for improvement. We offer these suggestions for ways
to improve the usability and performance of the model, based on our experience
with the applications described in this paper.

An Experimental Evaluation of the New OpenMP Tasking Model 75

(a) Multisort evaluation (b) N Queens evaluation

(c) FFT evaluation (d) Strassen evaluation

(e) SparseLU evaluation (f) Alignment evaluation

(g) Floorplan evaluation

Fig. 10. Evaluation results for all the kernels. Speedups use serial version as baseline.

76 E. Ayguadé et al.

One problem we encountered consistently in our programming was the need
to capture the value of a data structure when all we had was a pointer to it.
If a pointer is used in a firstprivate directive, only the pointer is captured.
In order to capture the data structure pointed-at, the user must program it by
hand inside the task, including proper synchronization, to make sure that the
data is not freed or popped off the stack before it is copied. Support for this in
the language would improve the usability of the tasking model.

In the N Queens problem, we could have used a reduction operation for tasks.
In other words, we could have used a way to automatically make tasks contribute
values to a shared variable. It can be programmed explicitly using threadprivate
variables, but a reduction clause would save programming effort.

The taskgroup and taskwait constructions provide useful task synchroniza-
tion, but are cumbersome for programming some types of applications, such as a
multi-stage pipeline. A pipeline could be implemented by giving names to tasks,
and waiting for other tasks by name.

We anticipate much research in the area of improving the runtime library. One
research direction that would surely yield improvements is working on the task
scheduler, as it can significantly affect application performance. Another inter-
esting idea would be to find the impact of granularity on application performance
and develop ways, either explicitly or implicitly, to increase the granularity of
the tasks (for example by aggregating them) so they could be applied to applica-
tions with finer parallelism (e.g. the connected components problem) or reduce
the overhead in other applications.

Of course, we have not explored all possible application domains, so other
issues may remain to be found. Therefore, it is important to continue the asses-
ment of the proposal by looking at new applications and particularly at Fortran
codes, where optimizations could be affected differently by the tasking model.
Another interesting dimension to assess in the future is the point of view of
novice programmers and their learning curve with the model.

6 Conclusions

This paper had two objectives: first, test the expressiveness of the new OpenMP
tasks proposal. Second, verify that the model does not introduce hidden factors
that hamper the actual level of parallelism which can be achieved at runtime.

We have shown that the new proposal allows the programmer to express the
parallelism of a wide range of applications from very different domains (lin-
ear algebra, server applications, backtracking, etc). Furthermore, we have found
different issues that OpenMP language designers may want to consider in the
future to further improve the expressiveness of the language and simplify the
programming effort in some scenarios.

Using these applications we have seen the new proposal matches other task-
ing proposals in terms of performance and that it surpasses alternative imple-
mentations with the current 2.5 OpenMP elements. While these results are not
conclusive, as they certainly have not explored exhaustively all possibilities, they

An Experimental Evaluation of the New OpenMP Tasking Model 77

provide a strong indication that the model can be implemented without incurring
significant overheads. We have also detected two areas where runtime improve-
ments would benefit the applications (i.e. task scheduling and granularity).

In summary, we think that while the new OpenMP task proposal can be
improved, it provides a solid basis for the development of applications containing
irregular parallelism.

Acknowledgments

The Nanos group at BSC-UPC has been supported by the Ministry of Education
of Spain under contract TIN2007-60625, and the European Commission in the
context of the SARC integrated project #27648 (FP6).

References

1. Intel Corporation. Intel(R) C++ Compiler Documentation (May 2006)
2. Ayguadé, E., Copty, N., Duran, A., Hoeflinger, J., Lin, Y., Massaioli, F., Unnikr-

ishnan, P., Zhang, G.: A Proposal for Task Parallelism in OpenMP. In: Chapman,
B.M., Zheng, W., Gao, G.R., Sato, M., Ayguadé, E., Wang, D. (eds.) IWOMP
2007. LNCS, vol. 4935. Springer, Heidelberg (2008)

3. Hochstein, L., et al.: Parallel Programmer Productivity: A Case Study of Novice
Parallel Programmers. In: SuperComputing 2005 (November 2005)

4. Salvini, S.: Unlocking the Power of OpenMP. In: 5th European Workshop on
OpenMP (EWOMP 2003) (September 2003) (Invited)

5. Kurzak, J., Dongarra, J.: Implementing Linear Algebra Routines on Multi-Core
Processors with Pipelining and a Look Ahead. LAPACK Working Note 178, Dept.
of Computer Science, University of Tennessee (September 2006)

6. Blikberg, R., Sørevik, T.: Load balancing and OpenMP implementation of nested
parallelism. Parallel Computing 31(10-12), 984–998 (2005)

7. Massaioli, F., Castiglione, F., Bernaschi, M.: OpenMP parallelization of agent-
based models. Parallel Computing 31(10-12), 1066–1081 (2005)

8. Shah, S., Haab, G., Petersen, P., Throop, J.: Flexible control structures for paral-
lellism in OpenMP. In: 1st European Workshop on OpenMP (September 1999)

9. Van Zee, F.G., Bientinesi, P., Low, T.M., van de Geijn, R.A.: Scalable Paral-
lelization of FLAME Code via the Workqueuing Model. ACM Trans. Math. Soft.
(submitted, 2006)

10. Asanovic, K., et al.: The Landscape of Parallel Computing Research: A View from
Berkeley. Technical Report UCB/EECS-2006-183, Electrical Engineering and Com-
puter Science Depts., University of California at Berkeley (December 2006)

11. Frigo, M., Leiserson, C.E., Randall, K.H.: The implementation of the Cilk-5 multi-
threaded language. In: PLDI 1998: Proceedings of the ACM SIGPLAN 1998 con-
ference on Programming language design and implementation, pp. 212–223. ACM
Press, New York (1998)

12. Chamberlain, B., Feo, J., Lewis, J., Mizell, D.: An application kernel matrix for
studying the productivity of parallel programming languages. In: W3S Workshop
- 26th International Conference on Software Engineering, pp. 37–41 (May 2004)

13. Balart, J., Duran, A., Gonzàlez, M., Martorell, X., Ayguadé, E., Labarta, J.: Nanos
mercurium: a research compiler for openmp. In: Proceedings of the European Work-
shop on OpenMP 2004 (October 2004)

Language Extensions in Support of Compiler

Parallelization

Jun Shirako1,2, Hironori Kasahara1,3, and Vivek Sarkar4

1 Dept. of Computer Science, Waseda University
2 Japan Society for the Promotion of Science, Research Fellow

3 Advanced Chip Multiprocessor Research Institute, Waseda University
4 Department of Computer Science, Rice University

{shirako,kasahara}@oscar.elec.waseda.ac.jp, vsarkar@rice.edu

Abstract. In this paper, we propose an approach to automatic com-
piler parallelization based on language extensions that is applicable to
a broader range of program structures and application domains than in
past work. As a complement to ongoing work on high productivity lan-
guages for explicit parallelism, the basic idea in this paper is to make se-
quential languages more amenable to compiler parallelization by adding
enforceable declarations and annotations. Specifically, we propose the
addition of annotations and declarations related to multidimensional ar-
rays, points, regions, array views, parameter intents, array and object
privatization, pure methods, absence of exceptions, and gather/reduce
computations. In many cases, these extensions are also motivated by
best practices in software engineering, and can also contribute to per-
formance improvements in sequential code. A detailed case study of the
Java Grande Forum benchmark suite illustrates the obstacles to compiler
parallelization in current object-oriented languages, and shows that the
extensions proposed in this paper can be effective in enabling compiler
parallelization. The results in this paper motivate future work on build-
ing an automatically parallelizing compiler for the language extensions
proposed in this paper.

1 Introduction

It is now well established that parallel computing is moving into the mainstream
with a rapid increase in the adoption of multicore processors. Unlike previous
generations of mainstream hardware evolution, this shift will have a major im-
pact on existing and future software. A highly desirable solution to the mul-
ticore software productivity problem is to automatically parallelize sequential
programs. Past work on automatic parallelization has focused on Fortran and
C programs with a large body of work on data dependence tests [1,25,18,9] and
research compilers such as Polaris [7,19], SUIF [10], PTRAN [21] and the D Sys-
tem [12]. However, it is widely acknowledged that these techniques have limited
effectiveness for programs written in modern object-oriented languages such as
Java.

V. Adve, M.J. Garzarán, and P. Petersen (Eds.): LCPC 2007, LNCS 5234, pp. 78–94, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Language Extensions in Support of Compiler Parallelization 79

In this paper, we propose an approach to compiler parallelization based on
language extensions that is applicable to a broader range of program structures
and application domains than in past work. As a complement to ongoing work
on high productivity languages for explicit parallelism, the basic idea in this
paper is to make sequential languages more amenable to compiler paralleliza-
tion by adding enforceable declarations and annotations. In many cases, these
extensions are also motivated by best practices in software engineering, and can
also contribute to performance improvements in sequential code.

A detailed case study of the Java Grande Forum benchmarks [22,13] confirms
that the extensions proposed in this paper can be effective in enabling compiler
parallelization. Experimental results were obtained on a 16-way Power6 SMP to
compare the performance of four versions of each benchmark: 1) sequential Java,
2) sequential X10, 3) hand-parallelized X10, 4) parallel Java. Averaged over ten
JGF Section 2 and 3 benchmarks, the parallel X10 version was 11.9× faster than
the sequential X10 version, which in turn was 1.2× faster than the sequential Java
version (Figure 1). An important side benefit of the annotations used for paral-
lelization is that they can also speed up code due to elimination of runtime checks.
For the eight benchmarks for which parallel Java versions were available, the par-
allel Java version was an average of 1.3× faster than the parallel X10 version (Fig-
ure 2). However, for two of the eight benchmarks, the parallel Java version used a
different algorithm from the sequential Java version, and resulted in super-linear
speedups. When the sequential and parallel X10 versions for the two benchmarks
were modified to be consistent with the new algorithms, the parallel Java and X10
versions delivered the same performance on average (Figure 3).

The rest of the paper is organized as follows. Section 2 describes the language
extensions (annotations and declarations) proposed in this paper. Section 3 sum-
marizes the results of the case study including experimental results, and Section 5
contains our conclusions.

2 Language Extensions

While modern object-oriented languages such as Java have improved program-
ming productivity and code reuse through extensive use of object encapsulation
and exceptions, these same features have made it more challenging for automat-
ically parallelizing compilers relative to Fortran programs where data structures
and control flow are more statically predictable. In this section, we propose a
set of declarations and annotations that enable compilers to perform automatic
parallelization more effectively for these languages. Unlike annotations that ex-
plicitly manage parallelism as in OpenMP [6], our approach is geared toward
enforceable declarations and annotations that can be expressed and understood
in the context of sequential programs, and that should be useful from a software
engineering viewpoint because of their ability to reduce common programming
errors. Another difference from OpenMP is that the correctness of all our pro-
posed annotations and declarations is enforced by the language system i.e., they
are all checked statically or dynamically, as outlined below.

80 J. Shirako, H. Kasahara, and V. Sarkar

2.1 Multidimensional Arrays, Regions, Points

Multidimensional arrays in Java are defined and implemented as nested unidi-
mensional arrays. While this provides many conveniences for guaranteeing safety
in a virtual machine environment (e.g., subarrays can be passed as parameters
without exposing any unsafe pointer arithmetic), it also creates several obsta-
cles to compiler optimization and parallelization. For example, a compiler cannot
automatically conclude that A[i][j] and A[i+1][j] refer to distinct locations
since the nested array model allows for the possibility that A[i] and A[i+1]
point to the same subarray. Instead, we propose the use of object-oriented mul-
tidimensional arrays as in X10 [3], in which a compiler is guaranteed that A[i,j]
and A[i+1,j] refer to distinct locations. Array Views (Section 2.2) make it possi-
ble to safely work with subarrays of multidimensional arrays without introducing
unsafe pointer arithmetic.

A related issue is that induction variable analysis can be challenging in cases
when an iterator is used or an integer variable is incremented by a step value
that is not a compile-time constant as illustrated in the following common idiom
from a DAXPY-like computation:

iy = 0; if (incy < 0) iy = (-n+1)*incy;
for (i = 0;i < n; i++) {
dy[iy +dy_off] += . . .; iy += incy;

}

In the above example, it is not easy for compilers to establish that incy �= 0
and that there are no loop-carried dependences on the dy array.

To simplify analysis in such cases, we recommend the use of regions and
points as proposed in ZPL [23] and X10, with extensions to support two kinds
of region constructors based on triple notation, [<start-expr> : <end-expr>
: <step-expr>] and [<start-expr> ; <count-expr> ; <step-expr>], both
of which are defined to throw a ZeroStepException if invoked with a zero-valued
step expression. The use of high level regions and points distinguishes our ap-
proach from past work on annotations of arrays for safe parallelization [16].

A key property of regions and points is that they can be used to define both
loops and arrays in a program. The above DAXPY-like example can then be
rewritten as follows:

iy = 0; if (incy < 0) iy = (-n+1)*incy;
// Example of [<start-expr>;<count-expr>;<step-expr>] region
for (point p : [iy ; n ; incy]) {
dy[p] += . . .;

}

In this case, the compiler will know that incy �= 0 when the loop is executed,
and that all dy[p] accesses are distinct.

2.2 Array Views

As indicated in the previous section, it is easier for a compiler to parallelize code
written with multidimensional arrays rather than nested arrays. However, this

Language Extensions in Support of Compiler Parallelization 81

raises the need for the programmer to work with subarrays of multidimensional
arrays without resorting to unsafe pointer arithmetic. Our solution is the use of
array views. An array view can be created by invoking a standard library method,
view(<start-point-expr>, <region-expr>), on any array expression (which
itself may be a view). Consider the following code fragment with array views:

// Allocate a two-dimensional M*N array
double[.] A = new double[[1:M,1:N]];
. . .
A[i,j] = 99;
. . .
// Allocate a one-dimensional view on A for row i
double[.] R = A.view([i,1], [1:N]);
. . .
temp = R[j]; // R[j] = 99, the value stored in A[i,j]

In the above example, R can be used like any one-dimensional array but ac-
cesses to R are aliased with accesses to A as specified by the region in the call to
A.view(). A ViewOutOfBoundsException is thrown if a view cannot be created
with the specified point and region. All accesses to R can only be performed with
points (subscripts) that belong to the region specified when creating the view.

Views can also be created with an optional intent parameter that must have
a value from a standard enum, {In, Out, InOut}. The default value is InOut
which indicates that the view can be used to read and write array elements. In
and Out intents are used to specify read-only and write-only constraints on the
array views. Read-only views can be very helpful in simplifying compiler paral-
lelization and optimization by identifying heap locations that are guaranteed to
be immutable for some subset of the program’s lifetime [17]. The runtime system
guarantees that each array element has the same intent in all views containing
the element. If an attempt is made to create a view that conflicts with the intent
specified by a previous view, then a ViewIntentException is thrown.

2.3 Annotations on Method Parameters

We propose the use of a disjoint annotation to assert that all mutable (non-
value) reference parameters in a method must be disjoint. (The this pointer is also
treated as a parameter in the definition of the disjoint annotation.) If a disjoint
method is called with two actual parameters that overlap, a ParameterOverlap-
Exception is thrown at runtime. Declaring a method as disjoint can help
optimization and parallelization of code within the method by assisting the
compiler’s alias analysis. This benefit comes at the cost of runtime tests that
the compiler must insert on method entry, though the cost will be less in a
strongly typed language like Java or X10 compared to a weakly typed language
like C since runtime tests are not needed for parameters with non-compatible
types in X10 but would be necessary in C due to its pointer addressing and cast
operators. This is also why we expect it to be more effective for X10 than the
noalias and restricted proposals that have been made in the past for C.

82 J. Shirako, H. Kasahara, and V. Sarkar

In addition to the disjoint annotation, we also propose the use of in, out,
and inout intent annotations on method parameters as in Fortran. For ob-
ject/array references, these annotations apply only to the object/array that is
the immediate target of the reference.

2.4 Array and Object Privatization

It is well known that privatization analysis is a key enabling technique for com-
piler parallelization. For modern object-oriented languages with dynamically al-
located objects and arrays, the effectiveness of privatization analysis is often
bounded by the effectiveness of escape analysis [4]. We propose a retained
type modifier1 for declarations of local variables and parameters with reference
types which asserts that the scope in which the local/parameter is declared will
not cause any reference in a retained variable to escape. We also permit the
retained modifier on declarations of methods with a non-value reference return
type, in which case it ensures that the this pointer does not escape the method
invocation.

The following loop from the MonteCarlo benchmark illustrates the use of
the retained modifier to declare that each ps object is private to a single loop
iteration.

results = new Vector(nRunsMC);
for(int iRun=0; iRun < nRunsMC; iRun++) {

// ps object is local to a single loop iteration
retained PriceStock ps = new PriceStock();
// All methods invoked on ps must be declared as "retained"
ps.setInitAllTasks((ToInitAllTasks) initAllTasks);
ps.setTask((x10.lang.Object) tasks.elementAt(iRun));
ps.run();
results.addElement(ps.getResult());

} // for

To enable automatic parallelization, the compiler will also need information
that indicates that results.addElement() is a reduction-style operator (associa-
tive and commutative). We discuss later in Section 2.7 how this information can
be communicated using a gather clause.

2.5 Pure Annotation for Side-Effect-Free Methods

The return value (or exception value) and all parameters of a method annotated
as pure must have value types i.e., they must be immutable after initialization.
Pure methods can call other pure methods and only allocate/read/write mutable
heap locations whose lifetimes are contained within the method’s lifetime (as
defined with the retained type modifier). Therefore, if two calls are made to
the same pure method with the same value parameters, they are guaranteed
1 The retained name chosen because other candidates like “private” and “local” are

overloaded with other meanings in Java.

Language Extensions in Support of Compiler Parallelization 83

to result in the same return value (or exception value). The only situation in
which the two calls may not have the same outcome is if one of the calls triggers a
nonfunctional error such as OutOfMemoryError. This definition of method purity
is similar to the definition of “moderately pure” methods in [26]. The correctness
of all pure annotations is enforced statically in our proposed approach, analogous
to the static enforcement of immutability of value types in the X10 language [3].

2.6 Annotations Related to Exceptions

We propose the following set of declarations and annotations that can be used to
establish the absence of runtime exceptions. All type declarations are assumed
to be checked statically, but dynamic cast operations can be used to support
type conversion with runtime checks. Some of the type declarations are based
on the theory of dependent types (e.g., see [11]) as embodied in version 1.01 of
the X10 language [20].

– Null Pointer exceptions: A simple way to guarantee the absence of a
NullPointerException for a specific operation is to declare the type of the un-
derlying object/array reference to be non-null. As an example, the Java lan-
guage permits null-valued references by default, with a proposal in JSR 305
[15] to introduce an @NonNull annotation to declare selected references as
non-null. In contrast, the X10 language requires that all references be non-
null by default and provides a special nullable type constructor that can be
applied to any reference type. Though the results in our paper can be used
with either default convention, we will use the X10 approach in all examples
in this paper.

– Array Index Out of Bounds exceptions: A simple way to guarantee the
absence of an IndexOutOfBoundsExecption for an array access is to ensure
that the array access is performed in a loop that is defined to iterate over
the array’s region e.g.,

for (point p : A.region) A[p] = ... ; //Iterate over A.region

This idea can be extended by iterating over a region that is guaranteed to
be a subset of the array’s region, as in the following example (assuming &&
represents region intersection):

// Iterate over a subset of A.region
for (point p : A.region && region2) A[p] = ... ;

When working with multiple arrays, dependent types can be use to establish
that multiple arrays have the same underlying region e.g.,

final region R1 = ...;
// A and B can only point to arrays with region = R1
final double[:region=R1] A = ...;
final double[:region=R1] B = ...;
for (point p : R1) A[p] = F(B[p]) ; // F is a pure method

84 J. Shirako, H. Kasahara, and V. Sarkar

In the above example, the compiler knows from the dependent type decla-
rations (and from the fact that the loop iterates over region R1) that array
accesses A[p] and B[p] cannot throw an exception.

Dependent types can also be used on point declarations to ensure the
absence of IndexOutOfBoundsException’s as in the access to A[p] in the
following example:

final region R1 = ...;
final double[:region=R1] A = ...;
// p can only take values in region R1
point(:region=R1) p = ...;
double d = A[p];

– Zero Divide/Step exceptions: A simple way to guarantee the absence of
a DivideByZeroException or a ZeroStepException for a specific operation is
to declare the type of the underlying integer expression to be nonzero using
dependent types as follows:

int(:nonzero) n = ...; // n’s value must be nonzero
int q = m / n; // No DivideByZeroException
region R3 = [low : high : n]; // No ZeroStepException

– ExceptionFree annotation: A code region annotated as ExceptionFree is
guaranteed to not throw any user-defined or runtime exception. As with pure
methods, it is possible that a region of code annotated as ExceptionFree
may encounter a nonfunctional error such as an OutOfMemoryError. The
compiler checks all operations in the annotated code region to ensure that
they are statically guaranteed to not throw an exception (by using the dec-
larations and annotations outlined above).

2.7 Gather Computations and Reductions in Loops

A common requirement in parallel programs is the ability to either gather or
reduce values generated in each loop iteration into (respectively) a collection or
aggregate value. There has been a large body of past work on compiler analyses
for automatically detecting gather and reduction idioms in loops and arrays
e.g., [14,8], but the presence of potentially aliased objects and large numbers
of virtual calls render these techniques ineffective for object-oriented programs.
Instead, we propose an extension to counted pointwise for loops that enables the
programmer to specify the gather and reduce operators explicitly in a sequential
program in a way that simplifies the compiler’s task of automatic parallelization.
Specifically, we extend the for loop with an optional gather clause as follows:

for (...) { <body-stmts> gather <gather-stmt> }

A unique capability of the gather statement is that it is permitted to read
private (retained) variables in the loop body that have primitive or value types,
including the index/point variables that control the execution of the counted for
loop. The design of gather clause is similar to the inlet feature in Cilk [24],
which represents a post-processing of each parallel thread. Informally, the se-
mantics of a for loop with a gather clause can be summarized as follows:

Language Extensions in Support of Compiler Parallelization 85

1. Identify retained variables in <body-stmt> with primitive or value types
that are also accessed in <gather-stmt>. We refer to these as gather vari-
ables.

2. Execute all iterations of the for loop sequentially as usual, but store the
values of all gather variables at the end of each iteration.

3. Execute <gather-stmt> once for each iteration of the for loop in a non-
deterministic order (analogous to the nondeterminism inherent in iterating
over an unordered collection in Java).

4. During execution of an instance of <gather-stmt> in Step 3, resolve read
accesses to gather variables by returning the corresponding instances stored
in Step 2.

We use the loop from the MonteCarlo benchmark discussed earlier to illustrate
the use of the gather clause to specify the gather statement:

results = new Vector(nRunsMC);
for(point p[iRun] : [0 : nRunsMC-1]) {

// ps object is local to a single loop iteration
retained PriceStock ps = new PriceStock();
// All methods invoked on ps must be declared as "retained"
ps.setInitAllTasks((ToInitAllTasks) initAllTasks);
ps.setTask((x10.lang.Object) tasks.elementAt(iRun));
ps.run();
retained ToResult R = ps.getResult(); // must be a value type
gather {

// Invoked once for each iteration of the for loop
results.addElement(R));

}
}

3 Case Study: Java Grande Forum Benchmarks

In this section, we present the results of a case study that we undertook to val-
idate the utility of the language annotations and extensions introduced in the
previous section for compiler parallelization. The case study was undertaken on
the Java Grande Forum (JGF) benchmark suite [22] because this suite includes
both sequential and parallel (multithreaded) Java versions of the same bench-
marks. We converted the sequential Java versions into sequential X10 versions,
and then studied which annotations were necessary to enable automatic paral-
lelization. A summary of the results can be found in Table 1, with discussion
of the LUFact and Euler benchmarks in the following subsections. Performance
results for sequential and parallel versions of the Java and X10 programs are
presented later in Section 4.

3.1 LUFact

This benchmark solves a N × N linear system using LU factorization followed
by a triangular solve. The kernel computation of the sequential Java version is
as follows:

86 J. Shirako, H. Kasahara, and V. Sarkar

Table 1. Annotations required to enable parallelization of Java Grande Forum bench-
marks

Series Sparse∗ SOR Crypt LUFact FFT Euler MolDyn Ray∗ Monte∗

Multi-dim arrays × × × ×

Regions, Points × × × × × ×

Array views × ×

In/Out/InOut ×

Disjoint × × ×

Retained × × ×

Pure method × ×

NonNull × × × × × × × × × ×

Region Dep-type × × × × ×

Nonzero ×

Exception free × × × × × ×

Reduction × × × ×

* Sparse: SparseMatmult, Ray: RayTracer, Monte: MonteCarlo

for (k = 0; k < nm1; k++) {
col_k = a[k];
l = idamax(n-k, col_k, k, 1) + k;
...
for (j = kp1; j < n; j++) {

col_j = a[j];
t = col_j[l];
if (l != k) { col_j[l] = col_j[k]; col_j[k] = t; }
daxpy(n-(kp1), t, col_k, kp1, 1, col_j, kp1, 1);

}
}

It is well known that all iterations of the inner j-loop can logically be executed
in parallel, however there are numerous obstacles that make it challenging or in-
tractable for a parallelizing compiler to discover this fact automatically. First,
most compilers will have to conservatively assume that references to col j from
distinct iterations could potentially be aliased to the same subarray. Second,
it will be hard for a compiler to statically establish that no array element ac-
cess in the loop will throw an ArrayIndexOutOfBoundsException, especially the
col j[l] access with subscript l that is the return value of the call to function
idamax. Third, a compiler will need to establish that the call to daxpy will not
inhibit parallel execution of the j loop.

Now, consider the scenario in which the sequential code is written as follows
using some of the language extensions proposed in this paper:

for (point k : [0:nm1-1] && a.region.rank(0) && a.region.rank(1)) {
final double[.] col_k = a.view([k,0], [0:nm-1], IN);
point (:region=a.region.rank(1)) l =

(point (:region=a.region.rank(1))) idamax(n-k, col_k, k, 1) + k;
...

Language Extensions in Support of Compiler Parallelization 87

for (point j : [kp1:n-1] && a.region.rank(0)) {
final double[.] col_j = a.view([j,0], [0:nm-1], OUT);
t = a[j, l];
if (l != k) { a[j, l] = a[j, k]; a[j, k] = t; }
daxpy(n-(kp1), t, col_k, kp1, 1, col_j, kp1, 1);

}
}

As indicated in Table 1, the following annotations are sufficient to enable
compiler parallelization for the LUFact benchmark:

– Multi-dimensional arrays, Regions and Points, Array views: In this
example, array a is allocated as a two-dimensional array, and the use of
multidimensional array views ensures that references to col j from distinct
iterations are guaranteed to point to distinct subarrays.

– In/Out intents: The use of an IN intent for col k and an OUT intent for
col j ensures that accesses to the two subarrays will not inhibit parallelism.

– NonNull: Unlike Java, the default in X10 is that all object references are
non-null by default, thereby ensuring that NullPointerException’s cannot
inhibit parallelism in this loop.

– Region dependent types: The use of a dependent type with a region
constraint in the declaration of variable l ensures that all uses of l as a
subscript in the second dimension (dimension 1) of array a must be in bounds
— the cast operator effectively serves as a runtime check on the return value
from function idamax.

– Exception free: Finally, an exception-free annotation on the daxpy method
declaration (not shown above) assists the compiler in establishing that no
exceptions can inhibit parallelization of the j loop.

With these extensions, it becomes entirely tractable for a compiler to automat-
ically determine that iterations of the j loop can be executed in parallel.

3.2 Euler

The Euler benchmark solves a set of equations using a fourth order Runge Kutta
method. It has many loops that can only be parallelized if the compiler knows
that certain objects being accessed are private to each loop iteration. For exam-
ple, consider the following i loop in method calculateDummyCells:

private void calculateDummyCells(double localpg[][],
double localtg[][], Statevector localug[][]) { ...

Vector2 tan = new Vector2();
...
for (i = 1; i < imax; ++i) {
tan.ihat = xnode[i][0] - xnode[i-1][0];
tan.jhat = ynode[i][0] - ynode[i-1][0];
... scrap = tan.magnitude(); ...

}
...

}

88 J. Shirako, H. Kasahara, and V. Sarkar

In the sequential version, a single instance of the tan object is allocated and
reused across all iterations of the i loop. However, a closer examination reveals
that each iteration could use a private copy of the tan object, thereby removing
one of the obstacles to parallelization of the i loop.

We now consider the following alternate sequential version written using some
of the language extensions proposed in this paper:

private disjoint void calculateDummyCells(double[.] localpg,
double[.] localtg, Statevector[.] localug) { ...

for (point i : [1:imax-1] && xnode.region.rank(1) && ...) {
retained Vector2 tan = new Vector2();
tan.ihat = xnode[i, 0] - xnode[i-1, 0];
tan.jhat = ynode[i, 0] - ynode[i-1, 0];
... scrap = tan.magnitude(); ...

}
...

}

As indicated in Table 1, the following annotations are sufficient to enable
compiler parallelization for the Euler benchmark:

– Multi-dimensional arrays, Regions and Points: As with LUFact, the
use of multidimensional arrays, regions and points enables a compiler to
ensure that distinct iterations of the i loop are guaranteed to access distinct
subarrays of xnode and ynode without ArrayIndexOutOfBoundsException.

– Disjoint: The disjoint annotation on method calculateDummyCells en-
sures that references localpg and localtg must point to distinct arrays.

– Retained: The retained annotation on the declaration of variable tan
can be used by the compiler to determine that there are no loop-carried
dependences on that variable.

– NonNull: As with LUFact, the fact that all object references are non-null
by default ensures that NullPointerException’s cannot inhibit parallelism in
this loop.

4 Experimental Results

We then compared the performance of four versions of the Java Grande Forum
(JGF) benchmarks:

1. Sequential Java: This set consists of six Section 2 benchmarks (Crypt,
FFT, LUFact, Series, SOR, SparseMatmult) and four Section 3 benchmarks
(Euler, MolDyn, MonteCarlo, RayTracer) taken from version v2.0 of the
JGF benchmark release [13]2.

2. Sequential X10: Since the sequential subset of X10 overlaps significantly
with the sequential subset of Java, this version is quite close to the Sequential

2 Section 1 was excluded because it only contains microbenchmarks for low-level op-
erations.

Language Extensions in Support of Compiler Parallelization 89

Java version in most cases. As in [2] we use a “lightweight” X10 version with
regular Java arrays to avoid the large overheads incurred on X10 arrays in
the current X10 implementation. However, all the other characteristics of
X10 (e.g., non-null used as the default type declaration, forbidden use of
non-final static fields, etc.) are preserved faithfully in the Sequential X10
versions.

3. Hand Parallelized X10: This version emulates by hand the parallel ver-
sions that can be obtained by a compiler, assuming that annotations are
added to the sequential X10 versions as outlined in Table 1.

4. Parallel Java: This is the threadv1.0 version of the JGF benchmarks [13],
which contains multithreaded versions of five of the six Section 2 benchmarks
and three of the four Section 3 benchmarks. The unimplemented benchmarks
are FFT and Euler. Further, the threaded versions of two of the Section 2
benchmarks, SOR and SparseMatmult, were implemented using a different
underlying algorithm from the sequential versions in v2.0.

All performance results were obtained using the following system settings:

– The target system is a p570 16-way Power6 4.7GHz SMP server with 186GB
main memory running AIX5.3 J. In addition, each dual-core chip can access
32MB L3 cache per chip and 4MB L2 cache per core. The size of the L1
instruction cache is 64KB and data cache is 64KB.

– For all runs, SMT was turned off and a large page size of 16GB was used.
The sequential Java and X10 versions used only 1 processor, where as the
parallel Java and X10 versions used all 16 processors.

– The execution environment used for all Java runs is IBM’s J9 VM (build 2.4,
J2RE 1.6.0) with the following options, -Xjit:count=0,optLevel=veryHot,
ignoreIEEE -Xms1000M -Xmx1000M.

– The execution environment used for all X10 runs was version 1.0.0. of the
X10 compiler and runtime, combined with the same JVM as above, IBM’s J9
VM (build 2.4, J2RE 1.6.0), but with additional options to skip null pointer
and array bounds checks in X10 programs in accordance with the annota-
tion in the X10 source program. The INIT THREADS PER PLACE parameter
was set to 1 and 16 for the sequential and parallel X10 runs respectively.
(MAX NUMBER OF PLACES was set to 1 in both cases.)

– The X10 runtime was also augmented with a special one-way synchroniza-
tion mechanism to enable fine-grained producer-consumer implementations
of X10’s finish and next operations.

– For all runs, the main program was extended with a three-iteration loop
within the same Java process, and the best of the three times was reported
in each case. This configuration was deliberately chosen to reduce/eliminate
the impact of JIT compilation time in the performance comparisons.

4.1 Sequential and Parallel Versions of X10

Figure 1 shows the speedup ratio of the serial and parallel X10 versions relative
to the sequential Java version (JGF v2.0) for all ten benchmarks. An interesting

90 J. Shirako, H. Kasahara, and V. Sarkar

1.0 1.0
1.5 1.1

1.6 1.9
1.0 1.0 1.0 0.9 1.2

15.9

11.9

22.8

13.8

22.8
23.5

1.3

14.9

13.2

3.2

14.3

0

5

10

15

20

25

Crypt FFT LUFact Series SOR SparseMat Euler MolDyn MonteCarlo RayTracer

Section2 Section3 Average

X10 Serial

X10 Parallel

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..................

..

..

..

..

..

..

..

..

..

..............................

..

..

..

..

..

.........

S
p

e
e
d

u
p

 w
.r

.t
.
JG

F
 s

e
ri

a
l

(v
2

.0
)

..

Fig. 1. Performance of Sequential and Parallel versions of X10 relative to Sequential
Java

observation is that the sequential X10 version often runs faster than the se-
quential Java version. This is due to the annotations in the X10 program which
enabled null checks and array bounds checks to be skipped. On average, the
sequential X10 version was 1.2× faster than the sequential Java version, and the
parallel X10 version was 11.9× faster than the sequential X10 version.

The sources of large speedups for SOR and LUFact were as follows. SOR’s
pipeline parallelism (faithful to the sequential version) was implemented using
tightly-coupled one-way synchronizations which were added to the X10 runtime.
The annotations for LUFact enabled a SPMD parallelization by following clas-
sical SPMDization techniques such as the approach outlined in [5].

The speedup was lowest for two benchmarks, Euler and Raytracer. The chal-
lenge in Euler is that it consists of a large number of small parallel loops which
could probably benefit from more aggressive loop fusion and SPMD paralleliza-
tion transformations than what was considered in our hand-parallelized experi-
ments. The challenge in Raytracer is the classic trade-off between load balance
(which prefers cyclic-style execution of the parallel loop) and locality (which
prefers a block-style execution of the parallel loop).

4.2 Comparison with Parallel Java Versions

In this section, we extend results from the previous section by including results
for Parallel Java executions as well. As mentioned earlier, Parallel Java ver-
sions (threadv1.0) are available for 8 of the 10 benchmarks. Results for these 8

Language Extensions in Support of Compiler Parallelization 91

1.0 1.5 1.1 1.6 1.9
1.0 1.0 0.9 1.2

15.9

22.8

13.8

22.8
23.5

14.9

13.2

3.2

16.315.6

12.0
12.9

29.6

54.1

10.5

13.2

15.2

20.4

0

10

20

30

40

50

60

Crypt LUFact Series SOR SparseMat MolDyn MonteCarlo RayTracer

Section2 Section3 Average

X10 Serial

X10 Parallel

JGF Parallel (threadv1.0)

.........

..

..

............

..

..

..

......

..

..
..

..

..

..................

..

..

..

........................

..

..

......

..

..

........................

..

..

..

S
p

e
e
d

u
p

 w
.r

.t
.
JG

F
 s

e
ri

a
l

(v
2

.0
)

Fig. 2. Performance of Sequential and Parallel versions of X10 and Parallel Java relative
to Sequential Java

benchmarks are shown in Figure 2. The two benchmarks for which the Parallel
Java versions significantly out-performed the Parallel X10 versions were SOR
and SparseMatmult. On closer inspection, we discovered that the underlying se-
quential algorithm was modified in both parallel versions (relative to the v2.0
sequential Java versions).

For SOR, the threadv1.0 parallel Java version uses a “red-black” scheduling
of loop iteration to expose doall parallelism, even though this transformation
results in different outputs compared to the sequential Java version. In contrast,
the parallel X10 version contains pipeline parallelism that we expect can be
automatically extracted from the sequential X10 version, and in fact returns the
same output as the sequential X10 version.

For SparseMatmult, the thread v1.0 parallel Java version inserts an algorith-
mic step to sort non zero elements by their row value, so that the kernel compu-
tation can be executed as simple doall loop. Unfortunately, this additional step
isn’t included in the execution time measurement for the Parallel Java case.

To take into account the algorithmic changes in the Parallel Java versions,
Figure 3 show an alternate version of Figure 2 in which the algorithms used for
the sequential and parallel X10 versions are modified to match the algorithm
used in the parallel Java versions. With the algorithmic changes, we see that the
performance of the parallel Java and X10 versions are now evenly matched in
the average case.

92 J. Shirako, H. Kasahara, and V. Sarkar

29.8

54.8

SOR * SparseMat *

1.0 1.5 1.1 1.6 1.9
1.0 1.0 0.9 1.2

15.9

22.8

13.8
14.9

13.2

3.2

16.315.6

12.0
12.9

29.6

54.1

10.5

13.2

15.2

20.4

0

10

20

30

40

50

60

Crypt LUFact Series MolDyn MonteCarlo RayTracer

Section2 Section3 Average

X10 Serial

X10 Parallel

JGF Parallel (threadv1.0)

.........

..

..

............

..

..

..

......

..

..
..

..

......

..

..

........................

..

..

..

S
p

e
e
d

u
p

 w
.r

.t
.
JG

F
 s

e
ri

a
l

(v
2

.0
)

..

..

..

..

..

..

..

......

..

..

..

..

..

......

Fig. 3. Performance of Sequential and Parallel versions of X10 and Parallel Java relative
to Sequential Java, with alternate Parallel X10 versions for SOR and SparseMatmult

5 Conclusions and Future Work

In this paper, we proposed a set of language extensions (enforced annotations and
declarations) designed with a view to making modern object oriented languages
more amenable to compiler parallelization. Many of the proposed extensions
are motivated by best practices in software engineering for sequential programs.
This is in contrast to the OpenMP approach where the annotations are geared
towards explicit parallel programming and the correctness of user pragmas is
not enforced by the language system.

We also performed a detailed case study of the Java Grande Forum bench-
marks to confirm that the extensions proposed in this paper are effective in
enabling compiler parallelization. Experimental results obtained on a 16-way
Power6 SMP showed that the use of these language extensions can improve
sequential execution time by 20% on average, and that a hand-simulation of
automatically parallelized X10 programs can deliver speedup by matching the
performance of the multithreaded Java versions of the JGF benchmarks.

The main topic for future work is to build an automatically parallelizing
compiler which exploits the language extensions proposed in this paper. Another
topic is to extend the definition of the language extensions to apply to explicitly
parallel code e.g., defining array views in the presence of distributions, and
defining the semantics of in/out/inout intents for array views in the presence of
concurrent array operations.

Language Extensions in Support of Compiler Parallelization 93

Acknowledgments

We are grateful to all X10 team members for their contributions to the X10
software used in this paper. We would like to especially acknowledge Vijay
Saraswat’s work on the design and implementation of dependent types in the
current X10 implementation, and Chris Donawa and Allan Kielstra’s implemen-
tation of experimental options for X10 in IBM’s J9 virtual machine. While at
IBM, Vivek Sarkar’s work on X10 was supported in part by the Defense Ad-
vanced Research Projects Agency (DARPA) under its Agreement No. HR0011-
07-9-0002. Finally we would like to thank Doug Lea, John Mellor-Crummey and
Igor Peshansky for their feedback on this paper.

References

1. Allen, R., Kennedy, K.: Optimizaing Compilers for Modern Architectures. Morgan
Kaufmann Publishers, San Francisco (2001)

2. Barik, R., Cave, V., Donawa, C., Kielstra, A., Peshansky, I., Sarkar, V.: Experiences
with an smp implementation for x10 based on the java concurrency utilities. In:
Workshop on Programming Models for Ubiquitous Parallelism (PMUP), held in
conjunction with PACT 2006 (September 2006)

3. Charles, P., Donawa, C., Ebcioglu, K., Grothoff, C., Kielstra, A., von Praun, C.,
Saraswat, V., Sarkar, V.: X10: an object-oriented approach to non-uniform cluster
computing. In: Proceedings of OOPSLA 2005, pp. 519–538. ACM Press, New York
(2005)

4. Choi, J.-D., Gupta, M., Serrano, M.J., Sreedhar, V.C., Midkiff, S.P.: Stack alloca-
tion and synchronization optimizations for java using escape analysis. ACM Trans.
Program. Lang. Syst. 25(6), 876–910 (2003)

5. Cytron, R., Lipkis, J., Schonberg, E.: A compiler-assisted approach to spmd exe-
cution. In: Supercomputing 1990: Proceedings of the 1990 ACM/IEEE conference
on Supercomputing, Washington, DC, USA, pp. 398–406. IEEE Computer Society,
Los Alamitos (1990)

6. Dagum, L., Menon, R.: OpenMP: An industry standard API for shared memory
programming. IEEE Computational Science & Engineering (1998)

7. Eigenmann, R., Hoeflinger, J., Padua, D.: On the automatic parallelization of the
perfect benchmarks. IEEE Trans. on parallel and distributed systems 9(1) (January
1998)

8. Gerlek, M.P., Stoltz, E., Wolfe, M.: Beyond induction variables: detecting and
classifying sequences using a demand-driven ssa form. ACM Trans. Program. Lang.
Syst. 17(1), 85–122 (1995)

9. Haghighat, M.R., Polychronopoulos, C.D.: Symbolic analysis for parallelizing com-
pilers. Kluwer Academic Publishers, Dordrecht (1995)

10. Hall, M.W., Anderson, J.M., Amarasinghe, S.P., Murphy, B.R., Liao, S., Bugnion,
E., Lam, M.S.: Maximizing multiprocessor performance with the SUIF compiler.
IEEE Computer (1996)

11. Harper, R., Mitchell, J.C., Moggi, E.: Higher-order modules and the phase distinc-
tion. In: POPL 1990: Proceedings of the 17th ACM SIGPLAN-SIGACT sympo-
sium on Principles of programming languages, pp. 341–354. ACM Press, New York
(1990)

94 J. Shirako, H. Kasahara, and V. Sarkar

12. Hiranandani, S., Kennedy, K., Tseng, C.-W.: Preliminary experiences with the
fortran d compiler. In: Proc. of Supercomputing 1993 (1993)

13. The Java Grande Forum benchmark suite,
http://www.epcc.ed.ac.uk/javagrande

14. Jouvelot, P., Dehbonei, B.: A unified semantic approach for the vectorization and
parallelization of generalized reductions. In: ICS 1989: Proceedings of the 3rd in-
ternational conference on Supercomputing, pp. 186–194. ACM Press, New York
(1989)

15. Jsr 305: Annotations for software defect detection,
http://jcp.org/en/jsr/detail?id=305

16. Moreira, J.E., Midkiff, S.P., Gupta, M.: Supporting multidimensional arrays in
java. Concurrency and Computation Practice & Experience (CCPE) 15(3:5), 317–
340 (2003)

17. Pechtchanski, I., Sarkar, V.: Immutability Specification and its Applications. Con-
currency and Computation Practice & Experience (CCPE) 17(5:6) (April 2005)

18. Pugh, W.: The omega test: A fast and practical integer programming algorithm
for dependence analysis. In: Proc. of Super Computing 1991 (1991)

19. Rauchwerger, L., Amato, N.M., Padua, D.A.: Run-time methods for parallelizing
partially parallel loops. In: Proceedings of the 9th ACM International Conference
on Supercomputing, Barcelona, Spain, pp. 137–146 (July 1995)

20. Saraswat, V.: Report on the experimental language x10 version 1.01,
http://x10.sourceforge.net/docs/x10-101.pdf

21. Sarkar, V.: The PTRAN Parallel Programming System. In: Szymanski, B. (ed.)
Parallel Functional Programming Languages and Compilers. ACM Press Frontier
Series, pp. 309–391. ACM Press, New York (1991)

22. Smith, L.A., Bull, J.M., Obdrzálek, J.: A parallel java grande benchmark suite. In:
Supercomputing 2001: Proceedings of the 2001 ACM/IEEE conference on Super-
computing (CDROM), p. 8. ACM Press, New York (2001)

23. Snyder, L.: The design and development of zpl. In: HOPL III: Proceedings of the
third ACM SIGPLAN conference on History of programming languages, pp. 8–1–
8–37. ACM Press, New York (2007)

24. MIT laboratory for computer science Supercomputing technologies group. Cilk
5.3.2 reference manual,
http://supertech.csail.mit.edu/cilk/manual-5.3.2.pdf

25. Wolfe, M.: High Performance Compilers for Parallel Computing. Addison-Wesley
Publishing Company, Reading (1996)

26. Xu, H., Pickett, C.J.F., Verbrugge, C.: Dynamic purity analysis for java programs.
In: PASTE 2007: Proceedings of the 7th ACM SIGPLAN-SIGSOFT workshop on
Program analysis for software tools and engineering, pp. 75–82. ACM Press, New
York (2007)

http://www.epcc.ed.ac.uk/javagrande
http://jcp.org/en/jsr/detail?id=305
http://x10.sourceforge.net/docs/x10-101.pdf
http://supertech.csail.mit.edu/cilk/manual-5.3.2.pdf

Concurrency Analysis for Shared Memory

Programs with Textually Unaligned Barriers

Yuan Zhang1, Evelyn Duesterwald2, and Guang R. Gao1

1 University of Delaware, Newark, DE
{zhangy,ggao}@capsl.udel.edu

2 IBM T.J.Watson Research Center, Hawthorne, NY
duester@us.ibm.com

Concurrency analysis is a static analysis technique that determines whether two
statements or operations in a shared memory program may be executed by
different threads concurrently. Concurrency relationships can be derived from
the partial ordering among statements imposed by synchronization constructs.
Thus, analyzing barrier synchronization is at the core of concurrency analyses for
many parallel programming models. Previous concurrency analyses for programs
with barriers commonly assumed that barriers are named or textually aligned.
This assumption may not hold for popular parallel programming models, such as
OpenMP, where barriers are unnamed and can be placed anywhere in a parallel
region, i.e., they may be textually unaligned. We present in this paper the first
interprocedural concurrency analysis that can handle OpenMP, and, in general,
programs with unnamed and textually unaligned barriers. We have implemented
our analysis for OpenMP programs written in C and have evaluated the analysis
on programs from the NPB and SpecOMP2001 benchmark suites.

1 Introduction

Concurrency analysis is a static analysis technique that determines whether two
statements or operations in a shared memory program may be executed by dif-
ferent threads concurrently. Concurrency analysis has various important appli-
cations, such as statically detecting data races [6,10], improving the accuracy of
various data flow analyses [16], and improving program understanding. In gen-
eral, precise interprocedural concurrency analysis in the presence of synchroniza-
tion constraints is undecidable [15], and a precise intraprocedural concurrency
analysis is NP-hard [18]. Therefore, a practical solution is to make a conservative
estimate of all possible concurrency relationships, such that two statements that
are not determined to be concurrent cannot execute in parallel in any execution
of the program. If two statements are determined to be concurrent, they may
execute concurrently.

In this paper we present a new interprocedural concurrency analysis that can
handle parallel programming models with unnamed and textually unaligned bar-
riers. We present our analysis in the context of the OpenMP programming model
but our approach is also applicable to other SPMD (Single Program Multiple
Data) parallel programming models.

V. Adve, M.J. Garzarán, and P. Petersen (Eds.): LCPC 2007, LNCS 5234, pp. 95–109, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

96 Y. Zhang, E. Duesterwald, and G.R. Gao

OpenMP is a standardized set of language extensions (i.e., pragmas) and APIs
for writing shared memory parallel applications in C/C++ and FORTRAN.
Parallelism in an OpenMP program is expressed using the parallel construct.
Program execution starts with a single thread called the master thread. When
control reaches a parallel construct, a set of threads, called a thread team, is
generated, and each thread in the team, including the master thread, executes a
copy of the parallel region. At the end of the parallel region the thread team syn-
chronizes and all threads except for the master thread terminate. The execution
of the parallel region can be distributed within the thread team by work-sharing
constructs (e.g., for, sections and single).

Synchronization is enforced mainly by global barriers and mutual exclusion
(i.e., critical constructs and lock/unlock library calls). When a thread reaches
a barrier it cannot proceed until all other threads have arrived at a barrier. In
OpenMP, barriers are unnamed and they may be textually unaligned. Thus,
threads may synchronize by executing a set of textually distinct barrier state-
ments. Textually unaligned barriers make it difficult to reason about the synchro-
nization structure in the program. Some parallel languages, therefore, require
barriers to be textually aligned [19]. Textually unaligned barriers also hinder
concurrency analysis because understanding which barrier statements form a
common synchronization point is a prerequisite to analyzing the ordering con-
straints imposed by them. Our analysis is the first interprocedural concurrency
analysis that can handle barriers in OpenMP and, in general, programs with
unnamed and textually unaligned barriers. Figure 1 shows an OpenMP example
program with a parallel region.

Barriers structure the execution of a parallel region into a series of synchro-
nized execution phases, such that threads synchronize on barriers only at the
beginning and at the end of each phase. Computing these execution phases for
each parallel region provides the basic skeleton for ordering relationships among
statements. Statements from different execution phases cannot execute concur-
rently. Thus, only statements within the same phase need to be examined for
computing the concurrency relation.

To illustrate the concept of execution phases consider the sample program
shown in Figure 1. The first execution phase, denoted as (begin, {b1, b2}), starts
at the beginning of the parallel region and extends up to barriers b1 and b2.
Note that barriers b1 and b2 establish a common synchronization point, i.e., they
match. The next barrier synchronization point is at barriers {b3, b4}. Hence, the
next execution phase is ({b1, b2}, {b3, b4}).

It is easy to see that statements from two different execution phases are or-
dered by barriers and thus cannot be concurrent. On the other hand, two state-
ments from the same execution phase may be concurrent, such as S1 and S3 in
Figure 1. However, barriers are not the only constructs that need to be considered
to determine execution phases. Additional ordering constraints may be imposed
by control constructs. Consider statements S9 and S11 in Figure 1, which are
on different branches of the conditional statement with predicate C4. Since all
threads agree on the value of predicate C4 (i.e., the predicate is single-valued),

Concurrency Analysis for Shared Memory Programs 97

P1: sum += my_ID;

{

P2: num = omp_get_num_threads();
C4: if(num > 2){
S9:
 #pragma omp barrier // b5
S10:
 } else {
S11:
 #pragma omp barrier // b6

 #pragma omp parallel private(my_ID, num, y)
 {
 my_ID = omp_get_thread_num();
C1: if(my_ID > 2){
S1: i = 0;
 #pragma omp barrier // b1
S2: y = i + 1;
 } else {
S3: i = 1;
 #pragma omp barrier // b2
S4: y = i − 1;
 }

C2: if(my_ID == 0){
S5:
 #pragma omp barrier // b3
S6:
 }

 }
S8:
 #pragma omp barrier // b4

C3: if(my_ID != 0){ int my_ID, num, i, y, sum = 0; S7:

S12:
 }

 printf("i = %d\n", i);

 } // end of parallel

} // end of main

C5: if(my_ID == 0)

main()

Fig. 1. Example OpenMP program. The OpenMP library function calls
omp get thread number() and omp get num threads() return the thread identifier
of the calling thread and the total number of threads in the current team, respectively.

statements S9 and S11 can never be executed together in one execution, hence
they cannot be concurrent. On the contrary, predicate C1 is evaluated differently
by different threads (i.e., the predicate is multi-valued), so that statements on
the two branches may execute concurrently. Thus, another key issue in under-
standing the concurrency constraints is determining whether a control predicate
is single- or multi-valued.

In this paper, we propose an interprocedural concurrency analysis technique
that addresses the above ordering constraints imposed by synchronization and
control constructs. Our analysis computes for each statement s the set of state-
ments that may execute concurrently with s. The analysis proceeds in four major
steps:

Step 1: CFG construction: The first step consists of constructing a control
flow graph (CFG) that correctly models the various OpenMP constructs.
Step 2: Barrier matching: As a prerequisite to computing execution phases
we need to understand which barrier statements synchronize together, i.e, which
barrier statements match. We solve this problem as an extension to barrier
matching analysis [20]. Barrier matching verifies that barriers in an SPMD pro-
gram are free of synchronization errors. For verified programs, a barrier matching
function is computed that maps each barrier statement s to the set of barrier
statement that synchronize with s in at least one execution. Barrier matching
was previously described for MPI programs and we have extended it to handle
OpenMP programs. The computed barrier matching function is an input to the
next step.

98 Y. Zhang, E. Duesterwald, and G.R. Gao

Step 3: Phase partition and aggregation: In this step, we first partition
the program into a set of static execution phases. A phase (bi, bj) consists of
a set of basic blocks that lie on a barrier-free path between barrier bi and bj

in the CFG. We then aggregate phases (bp, bq) and (bm, bn) if bp matches bm,
and bq matches bn. A dynamic execution phase at runtime is an instance of an
aggregated static execution phase.
Step 4: Concurrency relation calculation: We first conservatively assume
that statements from the same execution phase may be concurrent but state-
ments from different phases are ordered and non-concurrent. We then apply a
set of ordering rules that reflect the concurrency constraints from other OpenMP
synchronization and work-sharing constructs to iteratively refine the concurrency
relation.

We have implemented the analysis for OpenMP programs written in C and
evaluated it on programs from the NPB [5] and SpecOMP2001 [17] benchmark
suites. Our evaluation shows that our concurrency analysis is sufficiently accurate
with the average size of a concurrency set for a statement being less than 6% of
total statements in all but one program.

The rest of the paper is organized as follows. We first present related work
in Section 2. The control flow graph is presented in Section 3. In Section 4
we first review the barrier matching technique and then present extensions to
handle multi-valued expressions in OpenMP and structurally incorrect programs.
Phase partition and aggregation is presented in Section 5, and the concurrency
relation calculation is presented in Section 6. We present experimental results in
Section 7, and finally conclude in Section 8.

2 Related Work

A number of researchers have looked at concurrency analysis for programs
with barriers. Lin [10] proposed a concurrency analysis technique (called non-
concurrency analysis) for OpenMP programs based on phase partitioning. Lin’s
analysis differs from our concurrency analysis in two main aspects. First, Lin’s
method is intraprocedural and cannot compute non-concurrency relationship
across procedure calls. Second, Lin’s method cannot account for synchronization
across textually unaligned barriers. The analysis does not recognize that textu-
ally unaligned barriers may in fact synchronize together, resulting in spurious
non-concurrency relationships. For instance, Lin’s technique would wrongfully
conclude that S1 and S3 in Figure 1 are non-concurrent.

Jeremiassen and Eggers [7] present a concurrency analysis technique that, sim-
ilar to our analysis, first partitions the program into phases, then aggregates some
phases together. Their analysis avoids the problem of having to identify whether
textually unaligned barriers synchronize together by assuming that barriers are
named through barrier variables. Barrier statements that refer to the same barrier
are assumed to be matched. Their technique also does not account for concurrency
constraints imposed by control constructs with a single-valued predicate. For in-
stance, in Figure 1 their analysis would conclude that S9 and S11 are concurrent.

Concurrency Analysis for Shared Memory Programs 99

(c) sections construct

barrier

#pragma omp atomic
 expression stmt atomicbegin

atomicbegin

stmt flush

#pragma omp flush

body

orderbegin

orderend

#pragma omp ordered
 body

singlebegin

singleend

body

barrier*

#pragma omp single
 body

masterbegin

masterend

body

#pragma omp master
 body

#pragma omp critical
 body

body

criticalbegin

criticalend

parend

body

barrier*

barrier*

parbegin#pragma omp parallel

 body

forbegin

forend

body

barrier*

for(...){
 body
}

#pragma omp for sectionbegin

barrier*barrier*

body1 body2

sectionend

#pragma omp sections
#pragma omp section

#pragma omp section
body1

body2

#pragma omp barrier

(g) barrier construct (h) atomic construct (i) flush construct (k) ordered construct

(d) single construct (f) critical construct(e) master construct

(a) parallel construct (b) for construct

Fig. 2. Control flow graph construction

Kamil and Yelick [8] proposed a concurrency analysis method for the Titanium
language [19] in which synchronization across textually unaligned barriers is not
allowed.

There also has been a lot of work on concurrency analysis for other parallel
programming languages, such as Ada and Java [3,2,6,11,13] in which synchro-
nization is mainly enforced by event-driven constructs like post-wait/wait-notify.
Agarwal et.al. [1] presents a may-happen-in-parallel analysis for X10 programs.

3 Step 1: Control Flow Graph Construction

The control flow graph for an OpenMP program is an extension of the control
flow graph for a sequential program. Figure 2 illustrates the graph construction
for each OpenMP construct. Begin and end nodes are inserted for each OpenMP
directive with a construct body. To model the sections construct, we insert a
control flow edge from the begin node to the first statement node of each section
in the construct, and a control flow edge from the last statement node of each
section to the end node of the sections construct. Constructs without a body
statement (e.g., barrier and flush) are represented by a single block.

100 Y. Zhang, E. Duesterwald, and G.R. Gao

There is an implicit barrier at the end of the work-sharing constructs for,
sections and single, unless the nowait clause is specified. Implicit barriers
are depicted as barrier* in Figure 2. Similarly, there is an implicit barrier at
the beginning of a parallel region, and an implicit barrier at the end of a parallel
region.

4 Step 2: Barrier Matching

The second step in our concurrency analysis consists of identifying the matching
barrier statements that synchronize together. Barrier matching analysis [20] was
previously described for MPI programs. In this section we first review the MPI
barrier matching analysis and then show how to extend it to handle OpenMP.

4.1 Review of Barrier Matching for MPI Programs

Barrier matching is an analysis and verification technique to detect stall condi-
tions caused by barriers. When the program is verified, the analysis computes
a barrier matching function that maps each barrier statement s to the set of
barrier statements that synchronize with s in at least one execution. The MPI
barrier matching analysis proceeds in three main steps:

Multi-valued Expression Analysis: In SPMD-style programs all threads ex-
ecute the same program but they may take different program paths. The ability
to determine which program paths may be executed concurrently requires an
analysis of the multi-valued expressions in the program. An expression is called
multi-valued if it evaluates differently in different threads. If used as a control
predicate, multi-valued expressions split threads into different program paths
that are executed concurrently by different threads. An example of a multi-
valued expression is my ID shown in Figure 3(a). Conversely, an expression
that has the same value in all threads is called single-valued. SPMD program-
ming paradigms like MPI or OpenMP usually contain multi-valued seed expres-
sions, such as library calls that return the unique thread identifier. All other
multi-valued expressions in the program are directly or indirectly dependent on
these multi-valued seed expressions.

The interprocedural multi-valued analysis is solved as a forward slicing prob-
lem based on a revised program dependence graph. The revised program depen-
dence graph contains nodes to represent statements that are connected through
data dependence edges and so called φ-edges. φ-edges are based on the notion of
φ-nodes in Static Single Assignment (SSA) form [4]. In SSA, a φ-node is inserted
at a join node where multiple definitions of a variable merge. The predicate that
controls the join node is called a φ-gate. A φ-edge connects a φ-gate with the
corresponding φ-node. Multi-valued expressions result as those expressions that
are reachable from a multi-valued seed expression along either data-dependence
or φ-edges in the revised program dependence graph.

Figure 3(c) illustrates the revised program dependence graph and multi-valued
expression analysis for the MPI program shown in Figure 3(a). It is important

Concurrency Analysis for Shared Memory Programs 101

get my_ID

my_ID > 2

i = 0

b1 b2

i = 1

(y)φ(i)φ ,

y=i+1 y=i−1

 {

C1: if(my_ID > 2){
S1: i = 0;
 #pragma omp barrier // b1
S2: y = i + 1;
 } else {
S3: i = 1;
 #pragma omp barrier // b2
S4: y = i − 1;
 }

 #pragma omp parallel private(my_ID, num, y)

 } // end of parallel

 my_ID = omp_get_thread_num();

my_ID = ...

my_ID > 2

i = 0

b1 b2

i = 1

y=i+1 y=i−1

par begin

par end

(y)φ

my_ID = ... my_ID > 2

−edgeφ

y=i+1 y=i−1

(y)φ

get my_ID my_ID > 2 (y)φ(i)φ ,

−edgeφ

y=i+1 y=i−1

C1: if(my_ID > 2){
S1: i = 0;
 MPI_Barrier(COMM); // b1
S2: y = i + 1;
 } else {
S3: i = 1;
 MPI_Barrier(COMM) // b2
S4: y = i − 1;
 }

 MPI_Comm_rank(COMM, &my_ID);

i = 0 i = 1

(a) (b) (c)

(e)(d) (f)

data dependence edge

data dependence edge

i = 0 i = 1

Fig. 3. An MPI program (a), its CFG (b), and its revised program dependence graph
(c). An OpenMP program (d), its CFG (e), and its revised program dependence graph
(f). The multi-valued expression slices are shown as shaded nodes in (c) and (f).

to note that variables i and y are single-valued for the executing threads inside
the conditional statement but they become multi-valued after the conditional
paths merge at the φ-node.

Barrier Expressions: A barrier expression at a node n in the CFG represents
the sequences of barriers that may execute along any paths from the beginning of
the program to node n. Barrier expressions are regular expressions with barrier
statements and function labels as terminal symbols, and three operators: con-
catenation (·), alternation (|) and quantification (∗), which represents barriers in
a sequence, in a condition, and in a loop, respectively. For example, the barrier
expression for Figure 3(a) is (b1| b2). A barrier expression is usually represented
by a barrier expression tree. Figure 4 shows the barrier expression tree for the
program shown in Figure 1.

Barrier matching: The final step combines the results of the previous two
steps to detect potential stall conditions caused by barriers. Recall that multi-
valued predicates create concurrent paths. Thus, a barrier subtree whose root
is an alternation with a multi-valued predicate describes two concurrent barrier

102 Y. Zhang, E. Duesterwald, and G.R. Gao

T2

.

.

.

c| c|

c|

|

0

0

c| c| 0 c| 0T = (((b1 b2) . (b3)) . (b4)) . (b5 | b6)

b1 b2 b3

b4

b5 b6

T1

T3

T5 T6

T4

Fig. 4. The barrier expression tree for the program in Figure 1. The symbol |c denotes
alternation with a multi-valued predicate.

sequences. Similarly, a quantification tree with a multi-valued predicate describes
concurrent barrier sequences in a loop in which threads concurrently execute
different numbers of iterations.

A barrier tree that does not contain either concurrent alternation or concur-
rent quantification describes a program in which all threads execute the same
sequence of barriers (although the sequence may be different across different ex-
ecutions of the program). Such a tree is obviously free of barrier synchronization
errors. A concurrent quantification tree signals a synchronization error because
concurrent threads execute different numbers of loop iterations and hence differ-
ent numbers of barriers. Therefore, the barrier verification problem comes down
to checking that all concurrent alternation subtrees in the program’s barrier tree
are well-matched, i.e., the two alternation subtrees always produce barrier se-
quences of the same length. The barrier matching analysis implements this check
by a counting algorithm that traverses the two subtrees of each concurrent al-
ternation tree. Details of the counting algorithm can be found in [20].

After verifying a concurrent alternation barrier tree, the analysis computes
the barrier matching function by ordering the leave nodes from each of its two
subtrees in a depth-first order, and then matching barriers in the same position
of the two ordered sequences.

4.2 Multi-valued Expressions Analysis for OpenMP Programs

In order to use barrier matching for our concurrency analysis, we developed an
extension of the multi-valued expressions analysis for shared variables. In MPI
programs all variables are local to the executing thread. In OpenMP programs,
on the other hand, variables are either shared or private. Private variables are
stored in thread private memory and observable only by the executing thread.
Private variables in OpenMP can therefore be handled in the same way as vari-
ables in MPI programs. Shared variables in OpenMP programs are stored in
global memory and observable by all threads simultaneously. The order of a
sequence of shared variables reads and writes that is observed by a thread is

Concurrency Analysis for Shared Memory Programs 103

not only determined by the program order, but also influenced by the memory
consistency model. The memory consistency model also complicates the multi-
valued expressions analysis by making some expressions that are not dependent
on the seed expression multi-valued.

To simplify the presentation we first assume the sequential consistency model
(SC model) [9]. The SC model requires that the result of the execution is the
same as if the operations of all the threads were executed in some sequence, and
the operations of each individual thread occur in the order specified by the pro-
gram. All threads observe the same sequence of operations. For instance, consider
the program fragment in Figure 5(a), in which variable i is shared, and variable
x is private. Figure 5(b) illustrates one of the possible execution sequences with
two threads under the SC model. Thread 1 reads i = 0 in statement S3 due to
the preceding write operation issued by thread 2, while thread 2 reads i = 1
in statement S3. In this example the shared variable i is multi-valued even if
it is not dependent on the seed expression. Therefore, we need to extend the
multi-valued expressions analysis for shared variables under the SC model by
incorporating all read operations on shared variables as multi-valued, and no
further slicing for shared variables is needed.

i = 0 i = 1

i = 0

x = i

i = 1 x = i

Thread 1

Thread 2S3: x = i;
S2: i = 1;
S1: i = 0;

(a) (b)

Fig. 5. (a) Example program (b) An execution sequence under the SC model

OpenMP provides a relaxed memory consistency model, under which a thread
may have its own temporary view of memory which is not required to be consis-
tent with global memory at all times. As a consequence, different threads may
observe different sequences of shared memory operations, and the shared vari-
able i in Figure 5(a) may be single-valued in some executions. However, since
the execution sequence illustrated in Figure 5(b) is also a valid execution under
OpenMP’s relaxed memory model, we still need to conservatively incorporate
all read operations on shared variables as multi-valued.

Consider again our sample program shown in Figure 3(d). Since variable i is
shared, we treat two reads on i at S1 and S3 as multi-valued. We then apply the in-
terprocedural forward slicing algorithm used in the original MPI analysis to com-
pute multi-valued expressions for private variables in OpenMP. Figure 3(f) shows
the resulting multi-valued expressions as the set of shaded nodes in the graph.

As in the original MPI multi-valued expression analysis, we assume OpenMP
and other library calls are annotated as either single- or multi-valued. Arrays are
treated as scalar variables and pointers are conservatively handled by treating
every pointer dereference and every variable whose address is taken as multi-
valued.

104 Y. Zhang, E. Duesterwald, and G.R. Gao

4.3 Barrier Trees and Barrier Matching for OpenMP Programs

Once the multi-valued expressions have been computed, barrier tree construc-
tion and barrier matching for OpenMP programs proceed as described for MPI
programs. Figure 4 shows the barrier expression tree for the program shown in
Figure 1. Barrier matching checks the three concurrent alternation subtrees T5,
T6 and T4. The analysis verifies subtree T5 as correct and reports that barriers
b1 and b2 match. However, the other subtrees T6 and T4 cannot be statically ver-
ified and the analysis would report a potential error, warning that the subtrees
are structurally incorrect.

4.4 Handling Structurally Incorrect Programs

Barrier matching analysis produces a barrier matching function only for verified
programs. As a static analysis, barrier matching is conservative and may there-
fore reject a program, although the program produces no synchronization errors
at runtime. Programs that will always be rejected are so called structurally incor-
rect programs. Informally, structural correctness means that a program property
holds for a program if it holds for every structural component of the program,
(i.e., every statement, expression, compound statement, etc.). In other words, a
structurally incorrect program contains a component that, if looked at in isola-
tion, has a synchronization error, although in the context of the entire program
no runtime error may result. Figure 1 is an example of a structurally incorrect
program because it contains two structural components, the conditionals C2

and C3 that, if looked at in isolation, are incorrect. Thus, the overall program
is deemed incorrect although no runtime synchronization error would result be-
cause C3 is the logical complement of C2. As reported in the previous section,
barrier matching analysis reports a potential error for each of the two conditional
components.

We discuss in this section modifications to compute partial barrier matching
information for programs whose synchronization structure is dynamically cor-
rect (i.e., the program terminates) even if they cannot be statically verified. Our
approach to handling structural incorrectness is to isolate the program region
that cannot be statically verified, and to partition the program into structurally
correct and structurally incorrect regions. Based on this partition we can ap-
ply barrier matching and, in turn, our concurrency analysis for the structurally
correct components of the program. For the structurally incorrect regions we
conservatively assume that all statements may execute concurrently.

When barrier matching encounters a program with a structurally incorrect
component p, a synchronization error is detected when processing the root of
the barrier expression subtree that represents p. We refer to such structural
component as an error component. For example, the barrier tree in Figure 4,
contains two error components T4 and T6.

Based on these error components we define two well-matched regions of a
structurally incorrect program. The first well-matched region consists of any
sequence of statements along an error-component-free path in the CFG that

Concurrency Analysis for Shared Memory Programs 105

starts at the program entry and terminates at a program point immediately
preceding an error component. Similarly, the second well-matched region consists
of any sequence of statements along an error-component-free path in the CFG
that starts at a program point immediately following an error component and
terminates at program exit. We define the “structurally incorrect region” as the
remainder of the program, that is, any statement that is not included in one
of the above well-matched regions. We conservatively treat all statements in
the structurally incorrect region as concurrent and compute barrier matching
functions for the structurally correct regions.

Consider again our example in Figure 4 and recall that barrier matching re-
ports two error components T4 and T6. The two well-matched regions of the
program in Figure 1 are defined as follows. The first region starts at program
entry and terminates at program point P1 in Figure 1 which immediately pre-
cedes the error component T6. The second region starts at program point P2

which immediately follows the error component T4 and extends up to program
exit. All statements between P1 and P2 are assumed to be concurrent.

5 Step 3: Phase Partition and Aggregation

The third step of the OpenMP concurrency analysis uses the computed barrier
matching function to divide the program into a set of static phases. A static
phase (bi, bj) consists of a sequence of basic blocks along all barrier-free paths in
the CFG that start at the barrier statement bi and end at the barrier statement
bj. Note that bi and bj may refer to the same barrier statement.

The phase partition method proceeds as proposed by Jeremiassen and Eg-
gers [7]. First we assume each barrier statement bi corresponds to a new global
variable Vbi . We then treat each barrier statement as a use of its corresponding
barrier variable, followed by definitions of all barrier variables in the program.
The problem of phase partition is then reduced to computing live barrier vari-
ables in the program. Recall that a variable v is live at program point p if the
value of v at p is used before being re-defined along some path in the control
flow graph starting at p. Precise interprocedural live analysis has been described
in [12]. Let Live(b) denote the set of barrier variables live at the barrier b. The
set of static phases in an OpenMP program is then summarized as:

{(bi, bj)|Vbj ∈ Live(bi), for all i and j}

In order to determine to which phases a basic block u belongs, we need to
reverse the control flow edges in the CFG and calculate live barrier variables for
each basic block again. Let LiveR(u) denote the set of live barrier variables at
basic block u in the reversed CFG. The phases to which block u belongs are:

{(bi, bj)|bi ∈ LiveR(u) ∧ bj ∈ Live(u)}

According to the barrier matching information, we then aggregate phases
(bm, bn) and (bp, bq) if barriers bm matches bp and bn matches bq. A dynamic
execution phase is an instance of an aggregated phase at runtime.

106 Y. Zhang, E. Duesterwald, and G.R. Gao

6 Step 4: Concurrency Relation Calculation

The final step of our concurrency analysis consists of calculating the concur-
rency relation among basic blocks. Since basic blocks from different aggregated
phases are separated by barriers, no two blocks in different phases can be exe-
cuted concurrently. We can therefore establish a first safe approximation of the
concurrency relation in the program by assuming that all blocks from the same
aggregated phase may be concurrent. However, this first approximation is overly
conservative and does not take concurrency constraints from certain OpenMP
constructs into account. We have developed the following set of concurrency rules
that address these constraints to refine the initial concurrency approximation.

1. (Concurrency Rule) Any two (possibly identical) basic blocks from the
same aggregated phase are concurrent. The set of concurrency relationships
obtained from this rule is denoted as CR.

2. (Non-concurrency Rules)
(a) Any two basic blocks from a master construct under the same paral-

lel region are not concurrent because they are executed serially by the
master thread.

(b) Any two basic blocks from critical constructs with the same name
(or from within the lock regions, enclosed by the omp set lock() and
omp unset lock() library calls, that are controlled by the same lock vari-
able) are not concurrent because they are executed mutually exclusively.
Note that we treat two potentially aliased lock variables as different.

(c) Two blocks in the same ordered construct are not concurrent because
the ordered construct body within a loop is executed in the order of
loop iterations.

(d) Two blocks from the same single construct that is not enclosed by a se-
quential loop are not concurrent. Note that OpenMP requires a single
construct body to be executed by one thread in the team, but it does
not specify which thread. Therefore two instances of a single construct
inside a sequential loop might be executed by two different threads con-
currently.

The set of non-concurrency relationships obtained from the non-concurrency
rules is denoted as NCR.

Finally, the concurrency relation among basic blocks results as CR − NCR.
Returning to our sample program in Figure 1. S1 and S3 are concurrent

because they are in the same aggregated phase (start, {b1, b2}). The same holds
for S2 and S4. However, S9 and S11 are not concurrent because barrier b5 does
not match barrier b6 (due to the single-valued predicate C4) thus S9 and S11 are
in different phases.

7 Experimental Evaluations

We have implemented the concurrency analysis for OpenMP/C programs on
top of the open-source CDT (C Development Tool) in Eclipse. The Eclipse CDT

Concurrency Analysis for Shared Memory Programs 107

Table 1. Experimental results

Benchmark FT IS LU MG SP quake

Source NPB2.3-C NPB3.2 NPB2.3-C NPB2.3-C NPB2.3-C SpecOMP2001

Souce Lines 1162 629 3471 1264 2991 1591

Blocks 682 278 2132 909 2503 1191

Procedures 17 9 18 15 22 27

Barriers 13 5 30 28 67 13

OpenMP constructs single for for single for for

master single for master

for critical critical

critical master

flush

Aggr. phases 29 11 41 103 223 24

Max. concurrency 101 59 83 256 130 33
set size

Relative max. 14.8% 21.2% 3.9% 28.1% 5.2% 2.8%
concurrency set size

Avg. concurrency 40 36 23 50 52 15
set size

Relative avg. 5.9% 12.9% 1.1% 5.5% 2.1% 1.3%
concurrency set size

constructs Abstract Syntax Trees for C programs. We evaluated the effectiveness
of our OpenMP concurrency analysis on a set of OpenMP programs from the
NPB (Nas Parallel Benchmarks) and SpecOMP2001 benchmark suites, as shown
in Table 1.

FT (3-D FFT), LU (LU solver), MG (Multigrid), and SP (Pentadiagonal
solver) are derived from the serial Fortran versions of NPB2.3-serial by the Omni
OpenMP compiler project [14]. IS (Integer sort) is an OpenMP C benchmark
from NPB3.2. Quake from SpecOMP2001 benchmark suite simulates seismic
wave propagation in large basins.

The top part of Table 1 lists several characteristics of the benchmark programs
such as the number of source lines, the number of barriers, either explicit or
implicit, and the various OpenMP constructs used in each benchmark.

The results of the concurrency analysis are shown in the bottom part of the
table. As an intermediate result, the table lists the number of aggregated phases
that have been computed. To estimate the accuracy of our concurrency analysis
we computed the average and maximum set size among the concurrency sets for
all nodes in the CFG. Our CFG is based on the CDT and includes statement
level block nodes. Set sizes would be smaller if statements would be composed
into basic block nodes. The table shows the absolute set size and the relative size
which is the percentage of the total number of nodes in the CFG. Recall that
the concurrency set of a block b consists of a set of blocks that might execute
concurrently with b in at least one execution. A concurrency set is usually a
superset of the real concurrency relation. Therefore the smaller the concurrency
set, the less conservative our concurrency analysis is. Table 1 indicates that our

108 Y. Zhang, E. Duesterwald, and G.R. Gao

analysis is not overly conservative since the size of the average concurrency set
is less than 6% of the total blocks for all benchmarks except IS, for which the
average concurrency set is 12.9% of the total number of blocks in the program.

8 Conclusions

In this paper we present the first interprocedural concurrency analysis that can
handle OpenMP and, in general, shared memory programs with unnamed and
textually unaligned barriers. Our approach is built on the barrier matching tech-
nique that has previously been described to verify barrier synchronization in
MPI. We extended barrier matching to handle shared variables and OpenMP.
We have implemented our analysis for OpenMP C programs and evaluated the
effectiveness of our analysis using benchmarks from the NPB and SpecOMP2001
benchmark suites. The experimental results confirm that our analysis is not
overly conservative. We are currently exploring the use of our concurrency anal-
ysis in combination with a dynamic data race detection tool by limiting the
instrumentation points that have to be considered during dynamic checking.
Other potential uses are in combination with performance tools to point the
user to areas with low levels of concurrency.

Acknowledgement

This work is, in part, based upon work supported by the Defense Advanced
Research Projects Agency under its Agreement No. HR0011-07-9-0002.

References

1. Agarwal, S., Barik, R., Sarkar, V., Shyamasundar, R.K.: May-happen-in-parallel
analysis of x10 programs. In: PPoPP 2007: Proceedings of the 12th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, pp. 183–193. ACM
Press, New York (2007)

2. Callahan, D., Kennedy, K., Subhlok, J.: Analysis of event synchronization in a
parallel programming tool. In: PPOPP 1990: Proceedings of the Second ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, pp.
21–30 (1990)

3. Callahan, D., Sublok, J.: Static analysis of low-level synchronization. In: PADD
1988: Proceedings of the 1988 ACM SIGPLAN and SIGOPS Workshop on Parallel
and Distributed Debugging, pp. 100–111 (1988)

4. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently
computing static single assignment form and the control dependence graph. ACM
Trans. Program. Lang. Syst. 13(4), 451–490 (1991)

5. NASA Advanced Supercomputing Divsion. Nas parallel benchmarks,
http://www.nas.nasa.gov/Software/NPB/

6. Duesterwald, E., Soffa, M.L.: Concurrency analysis in the presence of procedures
using a dataflow framework. In: TAV4: Proceedings of the Symposium on Testing,
Analysis, and Verification, pp. 36–48 (1991)

http://www.nas.nasa.gov/Software/NPB/

Concurrency Analysis for Shared Memory Programs 109

7. Jeremiassen, T., Eggers, S.: Static analysis of barrier synchronization in explic-
itly parallel systems. In: Proceedings of the International Conference on Parallel
Architectures and Compilation Techniques (PACT), Montreal, Canada (1994)

8. Kamil, A.A., Yelick, K.A.: Concurrency analysis for parallel programs with textu-
ally aligned barriers. Technical Report UCB/EECS-2006-41, EECS Department,
University of California, Berkeley (April 2006)

9. Lamport, L.: How to make a multiprocessor computer that correctly executes mul-
tiprocess programs. IEEE Trans. Computers 28(9), 690–691 (1979)

10. Lin, Y.: Static nonconcurrency analysis of openmp programs. In: First International
Workshop on OpenMP (2005)

11. Masticola, S.P., Ryder, B.G.: Non-concurrency analysis. In: PPOPP 1993: Pro-
ceedings of the Fourth ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pp. 129–138 (1993)

12. Myers, E.M.: A precise inter-procedural data flow algorithm. In: POPL 1981: Pro-
ceedings of the 8th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pp. 219–230. ACM Press, New York (1981)

13. Naumovich, G., Avrunin, G.S., Clarke, L.A.: An efficient algorithm for computing
mhp information for concurrent java programs. In: ESEC/FSE- 7: Proceedings of
the 7th European Software Engineering Conference held jointly with the 7th ACM
SIGSOFT International Symposium on Foundations of Software Engineering, pp.
338–354 (1999)

14. Omni OpenMP Compiler Project. Omni OpenMP Compiler,
http://phase.hpcc.jp/Omni/home.html

15. Ramalingam, G.: Context-sensitive synchronization-sensitive analysis is un-
decidable. ACM Transactions on Programming languages and Systems
(TOPLAS) 22(2), 416–430 (2000)

16. Sreedhar, V., Zhang, Y., Gao, G.: A new framework for analysis and optimization of
shared memory parallel programs. Technical Report CAPSL- TM-063, University
of Delaware, Newark, DE (2005)

17. Standard Performance Evaluation Corporation. SPEC OMP (OpenMP benchmark
suite), http://www.spec.org/omp/

18. Taylor, R.N.: Complexity of analyzing the synchronization structure of concurrent
programs (1983)

19. Yelick, K., Semenzato, L., Pike, G., Miyamoto, C., Liblit, B., Krishnamurthy,
A., Hilfinger, P., Graham, S., Gay, D., Colella, P., Aiken, A.: Titanium: A high-
performance Java dialect. In: ACM (ed.) ACM 1998 Workshop on Java for High-
Performance Network Computing ACM Press, New York (1998)

20. Zhang, Y., Duesterwald, E.: Barrier matching for programs with textu- ally un-
aligned barriers. In: PPoPP 2007: Proceedings of the 12th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming, pp. 194–204 (2007)

http://phase.hpcc.jp/Omni/home.html
http://www.spec.org/omp/

Iteration Disambiguation for Parallelism

Identification in Time-Sliced Applications

Shane Ryoo, Christopher I. Rodrigues, and Wen-mei W. Hwu

Center for Reliable and High-Performance Computing and
Department of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign
{sryoo,cirodrig,hwu}@crhc.uiuc.edu

Abstract. Media and scientific simulation applications have a large
amount of parallelism that can be exploited in contemporary multi-core
microprocessors. However, traditional pointer and array analysis tech-
niques often fall short in automatically identifying this parallelism. This
is due to the allocation and referencing patterns of time-slicing algo-
rithms, where information flows from one time slice to the next. In these,
an object is allocated within a loop and written to, with source data
obtained from objects created in previous iterations of the loop. The ob-
jects are typically allocated at the same static call site through the same
call chain in the call graph, making them indistinguishable by traditional
heap-sensitive analysis techniques that use call chains to distinguish heap
objects. As a result, the compiler cannot separate the source and des-
tination objects within each time slice of the algorithm. In this work
we discuss an analysis that quickly identifies these objects through a
partially flow-sensitive technique called iteration disambiguation. This is
done through a relatively simple aging mechanism. We show that this
analysis can distinguish objects allocated in different time slices across
a wide range of benchmark applications within tens of seconds even for
complete media applications. We will also discuss the obstacles to au-
tomatically identifying the remaining parallelism in studied applications
and propose methods to address them.

1 Introduction

The pressure of finding exploitable coarse-grained parallelism has increased with
the ubiquity of multi-core processors in contemporary desktop systems. Two do-
mains with high parallelism and continuing demands for performance are media
and scientific simulation. These often operate on very regular arrays with rela-
tively simple pointer usage, which implies that compilers may be able to identify
coarse-grained parallelism in these applications. Recent work has shown that
contemporary analyses are capable of exposing a large degree of parallelism in
media applications written in C [14].

However, there are still obstacles to be overcome in analyzing the pointer be-
havior of these applications. A significant percentage of these applications are
based on time-sliced algorithms, with information flowing from one time slice

V. Adve, M.J. Garzarán, and P. Petersen (Eds.): LCPC 2007, LNCS 5234, pp. 110–124, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Iteration Disambiguation for Parallelism Identification 111

to the next. The code of these applications typically consists of a large loop,
often with multiple levels of function calls in the loop body, where each iteration
corresponds to a time slice. Results from a previous iteration(s) are used for com-
putation in the current iteration. While there are typically dependences between
iterations, there is usually an ample amount of coarse-grained parallelism within
each iteration, or time slice, of the algorithm. For example, in video encoding
applications, there is commonly a dependence between the processing of consec-
utive video frames, a fundamental time slice of video processing. However, there
is significant parallelism within the video frame, where thousands of sub-pictures
can be processed in parallel.

From our experience, time-sliced algorithms typically operate by reading from
data objects that are written in the previous time slice, performing substantial
computation, and writing to data objects that will be used by the next time
slice. The primary step of parallelizing the computation of the time slice lies in
the disambiguation between the input and output objects of the time slice. This
proves to be a challenging task for memory disambiguation systems today. The
difficulty lies in the fact that the code is cyclic in nature. The output objects
of an iteration must become the input of the next iteration. That is, the input
and output objects are coupled by either a copying action or a pointer swap-
ping operation during the transition from one time slice to the next. Without
specialized flow sensitivity, a memory disambiguation system will conclude that
the input and output objects cannot be distinguished from each other.

Three different coding styles exist for transitioning output objects to input
objects in time-sliced algorithms:

1. Fixed purpose: The data objects operated on are allocated in an acyclic
portion of the program and designated specifically as input and output struc-
tures. At the end of an iteration, the data in the output structure are copied
to the input structure for use in the next iteration. Previous parallelism-
detection work [14] assumes this coding style.

2. Swapped buffer, or double-buffering: Two or more data objects are created
in the acyclic portion of the program and pointed to by input(s) and output
pointers. At the end of an iteration, the pointer values are rotated.

3. Iterative allocation: A new data object is allocated and written during
each iteration of the primary program loop and assigned to the output
pointer. At the end of the iteration, the output object of the current it-
eration is assigned to the input pointer in preparation for consumption by
the next iteration. Objects that are no longer needed are deallocated.

Many compiler analyses, even some that are flow-sensitive, will see the point-
ers in the latter two categories as aliasing within the loop. This is true when
considering the static code, since the stores in one iteration are writing the
objects that will be read in the next iteration. When the dynamic stream of
instructions is considered, however, the pointers and any stores and loads from
them are independent within a single iteration of the loop. In media and simu-
lation applications, this is where much of the extractable loop-level parallelism
lies. The goal of our work is to create a targeted, fast, and scalable analysis that

112 S. Ryoo, C.I. Rodrigues, and W.W. Hwu

is cycle-sensitive, meaning that it can distinguish objects allocated or referenced
in cyclic patterns. We will address the third category; the first is adequately
disambiguated by traditional points-to analysis and the second can be handled
by tracking the independence of the pointers via alias pairs [10] or connection
analysis [4].

Figure 1 shows an example of this within a video encoder. At least two related
images exist during MPEG-style P-frame encoding: the frame currently being
encoded and reconstructed and the frame(s) that was/were previously recon-
structed. During motion estimation and compensation, the encoder attempts to
achieve a close match to the desired, current image by copying in pieces from the
previous reconstructed frame. In terms of memory operations, it reads data from
the previous frame and writes it to the current frame. In the reference MPEG-4
encoder [11], these objects can come from the same static call sites and calling
contexts and must be disambiguated by determining that they were created in
different iterations of a control flow cycle.

Fig. 1. An example of cycle-sensitivity enabling parallelism

In the loop shown in Figure 1(a), the pointers prev and recon will point to
the same object at the circled assignment. Within the middle shaded region,
however, the two pointers will always point to different objects, since recon is
allocated in the current loop iteration and prev is not. Thus, loops within this
region, such as those within VopMotionCompensate as shown in Figure 1(b),
can have their iterations executed in parallel. The goal of our analysis, iteration
disambiguation, is to distinguish the most recently allocated object from older
objects that are allocated at the same site. This and similar cases require an
interprocedural analysis to be effective because the objects and loops involved
nearly always span numerous functions and loop scopes.

We first cover related work in Section 2. We then describe the analysis in
Section 3. Section 4 shows analysis results for several benchmark programs. We
conclude with some final comments and future work.

Iteration Disambiguation for Parallelism Identification 113

2 Related Work

The intent of iteration disambiguation is to quickly distinguish objects that come
from the same static call site and chain, but different iterations of a control flow
loop. It is designed as an extension of a more general pointer analysis system.
By doing this, the analysis is able to capture cases which general analyses are
incapable of distinguishing or cannot accomplish in an inexpensive manner. For
an overview of previous work in pointer analysis, we refer to [8].

The closest existing work to iteration disambiguation, in terms of disambigua-
tion results, is connection analysis, as proposed by Ghiya and Hendren [4]. It at-
tempts to overcome the limitation of basic points-to analysis and naming schemes
by using a storeless model [3] to determine the sets of interacting, or connected,
pointers that may alias. At each program point and for each calling context, the
analysis maintains the sets of connected local and global pointer variables. Each
pointer’s connection set approximates the set of other pointers with which it may
alias. Connections are removed, or “killed”, for a pointer when it is assigned, and
replaced with the connection information of the right-hand expression, if any. At
a given program point, disjoint connection sets for two pointers indicates that
they have not interacted in any way and do not conflict. Interprocedural analysis
is handled by exhaustive inlining.

Connection analysis distinguishes new and old objects in a loop by making
a newly-allocated object be initially unconnected to anything else. The basic
example shown in Figure 1 can be disambiguated by connection analysis because
the assignment to the variable recon kills recon’s connection to previous objects.
However, control flow within the loop body can foil connection analysis. When
a variable is assigned on only some paths through a loop, its connections are not
killed on the other paths. This leads to pointer aliasing of the variable and its
connected variables after the paths merge. This case has been observed in video
encoders and obscures parallelism in those applications.

Shape analysis is a flow-sensitive analysis which attempts to analyze the pat-
tern of pointer usage to express relationships between different instances of the
same abstract heap object, examples of which are presented in [5,6,15]. This
can improve pointer disambiguation for recursive data structures. Generally, the
possible types of structures must be known a priori to the analysis, with the
exception of [6]. The purpose of this work is not to identify the relationship be-
tween instances of recursive structures, but to disambiguate “top-level” pointers
retained in local or global variables that refer to objects created in different it-
erations of a control flow cycle. Shape analysis generally does not focus on this
aspect of pointer behavior.

Two independently developed may-alias points-to analyses [16,17] can distin-
guish different elements of an array where array elements are initialized in a loop
using a monotonically increasing variable to index the array. In their analyses,
there can be no data transfer between the array elements, whereas the objects
targeted by iteration disambiguation are coupled through copying or pointer as-
signment at the end of loop iterations. Their work is complementary to ours and
can be combined to provide greater precision.

114 S. Ryoo, C.I. Rodrigues, and W.W. Hwu

3 Analysis

This section describes iteration disambiguation, a dataflow algorithm that dis-
tinguishes objects allocated in different iterations of a cycle at compile-time. It
does this by marking objects’ references with different ages. Intuitively, if one
considers a loop body as a code segment observed during dynamic execution, the
objects created outside of the segment or in previous instances of the segment
are distinct from any objects created in the examined segment.

3.1 Example

Figure 2(a) shows the control flow graph for a simple example of an iteration
disambiguation opportunity, while Figure 2(b) shows an unrolled version of the
loop to clarify the relationship between pointers a and b within each outer loop
iteration. We define two memory objects A and B by their static allocation sites.
Since object B lies within a loop, its instances are given subscripts to indicate
the iteration of the loop in which they were allocated.

Fig. 2. Iteration disambiguation example

In the first iteration of the loop in Figure 2(b), pointer a points to object A,
while pointer b points to object B1, created in block 2.1. These two pointers do
not alias within block 3.1 but do in block 4.1. There is a similar situation in
block 3.2, except that in this case a points to object B1, created in block 2.1,
while b points to object B2, created in block 2.2. Additional iterations of the
loop would be similar to the second iteration. Although b aliases with a within
instances of block 4, the two do not alias within any instance of block 3: a points
to A or Bn−1, while b points to Bn. The compiler can determine that loads are
independent from stores within the smaller loop in block 3 and can combine this

Iteration Disambiguation for Parallelism Identification 115

with array index analysis to determine that parallel execution is safe for those
loop iterations.

Another way of looking at this relationship is that object Bn is a separate
points-to object from previously created objects. We call the Bn object new,
while Bn−1 and older objects are lumped together as aged. Objects become aged
at aging points, which are ideally just before a new object is created. Between
the aging points for an object, or between an aging point and the end of the
program, two pointers that point to these two objects cannot alias for any n.

3.2 Algorithm

Our algorithm operates on non-address-taken local variables in the program’s
control flow graph. A pointer analysis, run prior to the algorithm, annotates
variables with sets of objects they may point to. Points-to sets are represented
as a set of abstract object IDs, where each ID stands for an unknown number of
dynamic objects that exist at runtime. Intuitively, the analysis distinguishes new
references to an abstract object created within the body of a loop from aged ones
that must have been created prior to entering the loop or within a prior iteration
of the loop. References are ambiguous when it becomes unclear whether they
refer to aged or new objects. As long as the ages of two references are distinct
and unambiguous, they refer to independent dynamic objects within the scope
of an iteration of the most deeply nested loop that contains both references and
the allocation for that object. The algorithm is described for a single abstract
object with a unique allocation site and calling context. When analyzing multiple
objects, analyses of separate abstract objects do not interact. The compiler may
choose the objects which are potentially profitable; at this time every heap object
allocated within a cycle is analyzed.

The analysis uses aging points in the control flow graph to delineate the
scope over which a reference is considered new. A reference becomes aged when
it crosses an aging point. Aging points are placed at the entry point of each loop
and function containing the allocation. Placing aging points at the beginning
of loop iterations ensures that all new references within the loop are to objects
created in the current loop iteration. New references outside the loop point
to objects created in the last loop iteration. Aging at function entry points is
necessary for recursive function calls.

Recursive functions require additional consideration. A new reference becomes
aged at the entrance of a recursive function that may allocate it, and could be
returned from the function. This is effectively traveling backwards across an
aging point, creating a situation where the same reference is both aged and new
in the same region. We avoid this error by conservatively marking an aged
return value of a recursive function ambiguous when it is passed to callers which
are also in the recursion. 1

1 If a function could have multiple return values, the same situation can occur without
recursion. We analyze low-level code that places a function’s return data on the stack
unless it fits in a single register. Our conservative handling of memory locations yields
correct results for multiple return values on the stack.

116 S. Ryoo, C.I. Rodrigues, and W.W. Hwu

The example in Figure 2 obtained the aged reference via a local variable
that was live across the back edge of the loop. However, many programs retain
pointers to older objects in lists or other non-local data structures and load them
for use. In order to detect these pointers as aged, the analysis must determine
that the load occurs before any new references are stored to non-local memory.
Once non-local memory contains a new reference, the abstract object is labeled
escaped until control flow reaches the next aging point. Loads of an escaped
object return references that are ambiguous instead of aged. Effectively, non-
local memory is an implicit variable that is either ambiguous (escaped) or aged
(not escaped). Escaped reference analysis runs concurrently with propagation
of new and aged reference markings.

Setup. There are several items that need to be performed prior to executing
the dataflow algorithm:

1. A heap-sensitive pointer analysis is run to identify dynamically-allocated
objects, distinguished by call site and calling context [2], and find which
variables may reference the object(s). Figure 3(a) shows a code example
with initial flow-insensitive pointer analysis information.

2. SSAnotation is constructed for each function in the program, withμ-functions2

at loop entry points. Although constructing SSA notation prior to pointer
analysis can improve the resolution of the input information via partial flow-
sensitivity [7], this is not necessary for the algorithm to function correctly.

3. Aging points are marked, for each abstract object, at the entry of each
loop or function containing an allocation of the object. This is a bottom-
up propagation and visits strongly connected components in the program
callgraph only once. In loops, μ-functions that assign references to objects
created within the loops are aging points. The input parameters to a function
that may create the object are also marked as aging points.

4. A dataflow predicate, representing age, is initialized for each pointed-to ob-
ject on each pointer assignment, including SSA’s μ- and φ-functions, and
function parameter. The latter are treated as implicit copy operations dur-
ing interprocedural propagation. We initialize these predicates as follows:
– Pointer variables which receive the return address of the allocation call

are marked with new versions of the references.
– The destination of μ-functions are marked aged for an object if the

corresponding loop contains an allocation of the object.
– Destinations of loads that retrieve a reference from memory are opti-

mistically marked aged. Unlike the previous two cases, this initialized
value may change during propagation of dataflow.

– All other pointer assignments are marked unknown.
Figure 3(b) shows the results of SSA construction, marking of aging points,
and initialization of dataflow predicates for the example in Figure 3(a).

2 μ-functions were proposed for the Gated Single Assignment notation [1]. Unlike that
work, it is not necessary to know which references are propagated from the loop
backedges; we use the form simply to mark entries of loops.

Iteration Disambiguation for Parallelism Identification 117

Fig. 3. Iteration disambiguation dataflow

Propagation. Figure 3(c) shows the results of dataflow propagation for the
given example. Conceptually, the algorithm marks a reference returned by an
allocation routine as new. This dataflow predicate propagates forward through
the def-use chain until it reaches an aging point, after which it becomes aged.
This aged reference is also propagated forward. If aged and new references for
the same object meet at control flow merges other than aging points, the result
becomes ambiguous. Separate abstract objects do not interact in any way; for
example, propagation from a0 to a1 remains new for object A because there is
only an aging point for object B for that transition.

As mentioned previously, we desire that the analysis capture cases where older
object references are loaded from non-local memory. For this, the analysis iden-
tifies regions of the program where new or ambiguous references have escaped to
non-local memory. References loaded from memory outside this region are guar-
anteed to be aged, but those loaded within the region are ambiguous because a
potentially new reference has been placed in memory.

Propagation of age markings for object references and detection of escaped
references proceed concurrently. All propagation is done in the forward direction.
Age markings propagate via SSA def-use chains, while escape markings propa-
gate along intra- and inter-procedural control flow paths. Age propagation uses
a three-stage lattice of values, depicted in the legend in Figure 3. The least value
of the lattice is unknown. The other lattice values are aged, new, and ambiguous.
The join or union of an aged and a new reference is ambiguous, which means
that the compiler cannot tell the iteration relationship of the reference relative
to other object references in the loop. The contents of memory are ambiguous

118 S. Ryoo, C.I. Rodrigues, and W.W. Hwu

where an object has escaped; elsewhere, memory only contains aged references.
Age and escape markings increase monotonically over the course of the analysis.
The analysis provides a measure of flow-sensitivity if the base pointer analysis
did not support it: references that remain unknown at analysis termination are
not realizable.

Age markings propagate unchanged through assignment and address arith-
metic. The union of the ages is taken for references passed in to φ-functions
or to input parameters of functions that do not contain an allocation call. New
and ambiguous ages do not propagate through aging points. Function return
values are handled differently depending on whether the caller and callee lie in
a recursive callgraph cycle. For the nonrecursive case, return values are simply
propagated to the caller. For the recursive case, aged returns are converted to
ambiguous. This is necessary to preserve correctness; since the call itself is not
an aging point but the callee may contain aging points, a new reference passed
into the recursive call may be returned as aged while other references in the
caller to the same dynamic object would remain new.

Propagation proceeds analogously for escaped markings. The union of escaped
markings is taken at control flow merge points. Escaped markings are not prop-
agated past aging points since all references in memory become aged at those
points. At the return point of a call where the caller and callee lie in a recursive
cycle, memory is conservatively marked escaped.

Age and escaped reference markings influence one another through load and
store instructions. Stores may cause a new or ambiguous reference to escape past
the bounds that can be tracked via SSA. For our implementation, this occurs
when a pointer is stored to a heap object, global variable, or local variable which
is address-taken. At that store instruction, the analysis sets an escaped marking
which propagates forward through the program. The region where this escape
dataflow predicate is set is called the escaped region.

The analysis optimistically assumes during setup that loaded references are
aged. If a loaded reference is found to be in the escaped region, the analysis must
correct the reference’s marking to ambiguous and propagate that information
forward through def-use chains. Conceptually, the compiler cannot determine
whether the reference was the most recent allocation or an earlier one, since a
new reference has been placed in memory. An example of an escaped reference is
shown in the bottom block of Figure 3(c). Aged references do not escape because
the default state of references loaded from memory is aged.

Iteration disambiguation preserves context-sensitivity provided by the base
pointer analysis. The calling context is encoded for each object. When the anal-
ysis propagates object references returned from functions, the contexts are ex-
amined and objects with mismatched contexts are filtered out. The analysis also
performs filtering to prevent the escaped dataflow from propagating to some
unrealizable call paths: references can escape within a function call only if they
were created in that function or passed in as an input parameter. Our implemen-
tation currently is overly conservative for escaped dataflow when a reference is
an input parameter which doesn’t escape on some call paths. Handling this case

Iteration Disambiguation for Parallelism Identification 119

requires an analysis to determine which input parameters may escape, and the
case has not been prominent in studied applications.

3.3 Properties and Limitations

The iteration disambiguation algorithm explained here is only able to distinguish
the object from the current/youngest iteration of a cycle from objects allocated
during previous iterations. In other terms, the analysis is k-limited [9] to two
ages. The benefit of this is that the analysis is relatively simple and can be
formulated as an interprocedural, monotonic dataflow problem. In general only
the most recently allocated object is written, while older ones are read-only, so
a single age delineation is sufficient to identify parallelism.

The profitability of iteration disambiguation depends on how long a new ob-
ject stays in a local variable and is operated on before escaping. In studied media
and simulation applications, new references are often created at the top of loop
bodies and escape towards the bottom of the loop after significant computation
is performed. This exposes the available parallelism within the primary compu-
tation loops. However, is not uncommon for a reference to escape immediately
on allocation and not be retained in a local variable, which prevents benefit
from iteration disambiguation. The common case for this is sub-objects which
are linked into an aggregate object, such as separate color planes of an image.
Possible methods for resolving these objects are discussed in the next section.

The presented algorithm’s effectiveness is also inversely tied to the distance
between the aging points and the allocation of the object, since all objects be-
tween the aging locations and the allocation are aged. These cases might be
disambiguable if the aging point were relocated, but this causes more complex-
ity in utilizing the analysis results.

4 Experiments

This section presents empirical results that show that iteration disambiguation
generally takes a small amount of time and can identify the distinction between
cyclic objects. We covered two categories of benchmarks. For the first, we chose
programs from SPEC CPU 2000 and 2006, excluding those from 2000 that have
newer versions or equivalents in 2006, and those that the current version of our
compiler cannot compile correctly, notably gcc and perl. For the second category,
we used several applications from MediaBench I as well as a few independent
ones. Our intent with the broad selection is to show that the analysis can dis-
ambiguate references in application domains other than media and scientific
simulation. We use Fulcra [12] as our base pointer analysis.

4.1 Analysis Statistics

Figure 4 shows analysis statistics for the benchmark programs analyzed. The bars
represent iterationdisambiguation’s timeto analyze,annotate,andcount statistics

120 S. Ryoo, C.I. Rodrigues, and W.W. Hwu

0

5

10

15

20
16

4.
gz

ip
17

5.
vp

r
17

7.
m

es
a

17
9.

ar
t

18
3.

eq
ua

ke
18

8.
am

m
p

19
7.

pa
rs

er
25

4.
ga

p
25

5.
vo

rt
ex

30
0.

tw
ol

f
40

1.
bz

ip
2

42
9.

m
cf

43
3.

m
ilc

45
6.

hm
m

er
45

8.
sj

en
g

46
4.

h2
64

re
47

0.
lb

m
48

2.
sp

hi
nx

h2
63

de
c

h2
63

en
c

jp
eg

de
c

jp
eg

en
c

jp
g2

K
de

c
m

pe
g2

de
c

m
pe

g2
en

c
m

pe
g4

de
c

m
pe

g4
en

c
m

pg
12

3

0

200

400

600

800

1000
Time

Cyclic
Objects

Fig. 4. Iteration disambiguation analysis time and object count

in seconds, on a 1.8 GHz Athlon 64. The dots connected by lines represent the num-
ber of distinct cyclic objects, distinguishable by call site and calling contexts. The
number of heap objects is dependent on the degree of cloning (replication per call
site andpath) [13]performedby thebasepointer analysis. For example, theMPEG-
4 decoder and encoder applications have a large number of nested allocation func-
tions which create the largenumber of objects seen in the figure. The “lowest-level”
objects tend to be replicated the most, which affects some of our metrics.

In general the analysis is fast; for most programs, which have few cyclic ob-
jects, the analysis takes only a few seconds. Even for programs with many cyclic
objects, such as 464.h264ref and mpeg4enc, the analysis runs within 16 sec-
onds. The majority of analysis time is spent in the setup phase and the time for
propagation of age markings and escaped dataflow is usually insignificant. The
primary outliers are two SPEC CPU2000 benchmarks, 254.gap and 255.vortex.
These benchmarks are over twice as large as the majority of the benchmarks
in the program, with a correspondingly higher setup time. The larger size also
increases the amount of code that escaped reference dataflow must propagate
through. Finally, they have an unusually high number of references relative to
the size of the codes. Unlike the other benchmarks, the time for age propagation
and escaped reference dataflow is on the same order as setup time.

4.2 Object Classifications

There are two special object classifications which are exposed by the analysis.
First, some objects allocated within cycles are used as temporary storage and are
deallocated within the same iteration. These cases are interesting because they
represent privatization opportunies. In iteration disambiguation, these objects
are recognizable since only new references are used to load data from or store data
to them. The percentage of only-new objects is shown in Figure 5. Benchmarks
that have no cyclic objects are omitted.

Iteration Disambiguation for Parallelism Identification 121

0%

20%

40%

60%

80%

100%
16

4.
gz

ip

17
5.

vp
r

17
7.

m
es

a

17
9.

ar
t

18
3.

eq
ua

ke

18
8.

am
m

p

25
4.

ga
p

25
5.

vo
rt
ex

30
0.

tw
ol

f

40
1.

bz
ip

2

43
3.

m
ilc

45
6.

hm
m

er

45
8.

sj
en

g

46
4.

h2
64

re
f

48
2.

sp
hi

nx
3

h2
63

de
c

h2
63

en
c

jp
eg

de
c

jp
eg

en
c

jp
g2

K
de

c

m
pe

g2
de

c

m
pe

g2
en

c

m
pe

g4
de

c

m
pe

g4
en

c

m
pg

12
3

Useful
Objects

Ambiguous
Objects

Only New
Objects

Fig. 5. Iteration disambiguation results: proportion of only new and ambiguous objects

Second, for some cyclic objects, there are either no new markings or no aged
markings. For these objects, iteration disambiguation has no useful effect. We
term these ambiguous objects. In programs with inherent parallelism, these ob-
jects are commonly multidimensional arrays and sub-structures, which require
complementary analyses when detecting parallelism. As mentioned previously,
these lower-level objects are a significant portion of the total object count due
to heap cloning, and thus increase the apparent number of ambiguous objects
beyond a static count of call sites when heap cloning has an effect. Even exclud-
ing this effect, direct inspection of several of the applications has shown that the
majority of the heap objects are ambiguous.

4.3 Analysis Results

Prior to discussing the analysis results, we break the categories of aged and
ambiguous references into subcategories to gain a better understanding of the
results and program properties. They are:

– Loop Aged: The reference was passed via a local variable across the back-
edge of a loop, or entered a recursive function that may allocate the object.

– Loaded Aged: The reference’s source is loaded from memory in a region
where a new or ambiguous reference has not escaped.

– Merge Ambiguous: The age of the reference is ambiguous due to a control
flow or procedure call merge in which new and aged references of an object
merge via dataflow, such as for conditional allocations.

– Escape Ambiguous: The age of the reference is ambiguous because it was
obtained via a load in a code region where a new or ambiguous reference has
escaped. We also include aged references returned from a recursive function
to callers within the recursion in this category.

– CombinationAmbiguous: This represents a merge of an escape-ambiguous
reference with other types of references.

122 S. Ryoo, C.I. Rodrigues, and W.W. Hwu

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

16
4.

gz
ip

17
5.

vp
r

18
8.

am
m

p

30
0.

tw
ol

f

40
1.

bz
ip

2

43
3.

m
ilc

45
6.

hm
m

er

45
8.

sj
en

g

46
4.

h2
64

re
f

48
2.

sp
hi

nx
3

h2
63

en
c

jp
eg

de
c

jp
eg

en
c

jp
g2

K
de

c

m
pe

g4
de

c

m
pe

g4
en

c

Comb
Ambig

Escape
Ambig

Merge
Ambig

New

Loop
Aged

Loaded
Aged

Fig. 6. Iteration disambiguation results: percentages of reference types

Figure 6 shows statistics of the results of iteration disambiguation. Results are
shown as a percentage of the total static, heap-referencing memory operations,
in an assembly-like representation, for each program. When a memory operation
may access multiple cyclic objects, an equal fraction is assigned to each object.
References to objects that are only new have been omitted because they inflate
the apparent utility of the analysis. A significant percentage of both new and
aged references indicates likely independence of operations within a loop body.
Applications that have no useful cyclic objects have been omitted.

Although a more appropriate test of this analysis would be to show the amount
of parallelism exposed by the analysis, we do not attempt this for this work. The
objects of interest in many time-sliced applications are children objects of the
top-level objects that iteration disambiguation can operate on, and are identified
as ambiguous objects. We currently do not have an analysis to prove that children
are unique to a parent object, so the amount of extractable parallelism is small.
In the future we hope to show the difference in application performance when
the additional analyses are integrated into our framework.

The high percentage of escape and combination ambiguous references indicate
that many static operations on heap objects use references that have been stored
to and then loaded back from memory prior to an aging point. This is expected
for programs that build up large aggregate structures and then operate on them,
such as the larger SPEC CPU benchmarks. Despite the fact that ambiguous
objects tend to make up the majority of objects, they do not always dominate
the references because of fractional counting per memory operation. We observed
a tendency for operations to be one type of reference, because the objects they
reference usually have similar usage patterns.

Media programs have a high percentage of ambiguous references because the
majority of operations work on data substructures linked to top-level structures.
As previously mentioned, escaped references are often multidimensional arrays
and can be addressed with the appropriate analysis. Another case that is missed
by iteration disambiguation is sub-structures of a cyclic object linked into an

Iteration Disambiguation for Parallelism Identification 123

aggregate structure. We are currently developing a complementary analysis to
address this shortcoming.

One interesting case is 464.h264ref, which is a video encoder application and
thus expected to do well with iteration disambiguation. However, it has a smaller
percentage of new references than most applications. The reason is the common
use of an exit-upon-error function, which both calls and is called by many of
the allocation and free functions used in the application. This creates a large
recursion in the call graph, which has the effect of aging new references rapidly.
In addition, we discovered that approximately half of the loaded aged references
become escape ambiguous if the analysis does not prevent dataflow propagation
through unrealizable paths, such as calls to exit().

5 Conclusions and Future Work

This paper discusses iteration disambiguation, an analysis that distinguishes
high-level, dynamically-allocated, cyclic objects in programs. This cyclic rela-
tionship is common in media and simulation applications, and the appropriate
analysis is necessary for automatic detection and extraction of parallelism. We
show that we can disambiguate a significant percentage of references in a sub-
set of the presented applications. We also explain some of the reasons why the
analysis was not able to disambiguate more references in cases where we would
expect a compiler to be able to identify parallelism.

For future work, we will be developing complementary analyses which will
enable a compiler to automatically identify parallelism within programs that are
amenable to parallel execution. These include array analyses, analyses that iden-
tify structure relationships such as trees, and value flow and constraint analyses.

Acknowledgment

This work would not have been possible without the work performed by Erik
Nystrom and Sara Sadeghi Baghsorkhi on the Fulcra pointer analysis. We thank
Bolei Guo for his advice and the anonymous reviewers for their feedback. We also
acknowledge the support of the Gigascale Systems Research Center, funded un-
der the Focus Center Research Program, a Semiconductor Research Corporation
program.

References

1. Ballance, R., Maccabe, A., Ottenstein, K.: The Program Dependence Web: A rep-
resentation supporting control-, data-, and demand-driven interpretation of im-
perative languages. In: Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation, pp. 257–271 (1990)

2. Choi, J.D., Burke, M.G., Carini, P.: Efficient flow-sensitive interprocedural compu-
tation of pointer-induced aliases and side effects. In: Proceedings of the 20th ACM
Symposium on Principles of Programming Languages, pp. 232–245 (January 1993)

124 S. Ryoo, C.I. Rodrigues, and W.W. Hwu

3. Deutsch, A.: A storeless model of aliasing and its abstractions using finite repre-
sentations of right-regular equivalence relations. In: Proceedings of the 1992 Inter-
national Conference on Computer Languages, pp. 2–13 (April 1992)

4. Ghiya, R., Hendren, L.J.: Connection analysis: A practical interprocedural heap
analysis for C. In: Proceedings of the Eighth Workshop on Languages and Com-
pilers for Parallel Computing, pp. 515–533 (August 1995)

5. Ghiya, R., Hendren, L.J.: Is it a tree, a DAG, or a cyclic graph? A shape analysis
for heap-directed pointers in C. In: Proceedings of the 23rd ACM Symposium on
Principles of Programming Languages, pp. 1–15 (1996)

6. Guo, B., Vachharajani, N., August, D.I.: Shape analysis with inductive recursion
synthesis. In: Proceedings of the ACM SIGPLAN 2007 Conference on Programming
Language Design and Implementation (June 2007)

7. Hasti, R., Horwitz, S.: Using static single assignment form to improve owinsensi-
tive pointer analysis. In: Proceedings of the ACM SIGPLAN 1998 Conference on
Programming Language Design and Implementation, pp. 97–105 (June 1998)

8. Hind, M.: Pointer analysis: Haven’t we solved this problem yet? In: Proceedings of
the 2001 ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software
Tools and Engineering, pp. 54–61 (2001)

9. Jones, N.D., Muchnick, S.S.: Flow analysis and optimization of LISP-like struc-
tures. In: Proceedings of the 6th ACM SIGPLAN Symposium on Principles of
Programming Languages, pp. 244–256 (1981)

10. Landi, W., Ryder, B.G.: A safe approximate algorithm for interprocedural pointer
aliasing. In: Proceedings of the ACM SIGPLAN 1992 Conference on Programming
Language Design and Implementation, pp. 235–248 (June 1992)

11. MPEG Industry Forum, http://www.mpegif.org/
12. Nystrom, E.M.: FULCRA Pointer Analysis Framework. PhD thesis, University of

Illinois at Urbana-Champaign (2005)
13. Nystrom, E.M., Kim, H.-S., Hwu, W.W.: Importance of heap specialization in

pointer analysis. In: Proceedings of ACM-SIGPLAN-SIGSOFT Workshop on Pro-
gram Analysis for Software Tools and Engineering, pp. 43–48 (June 2004)

14. Ryoo, S., Ueng, S.-Z., Rodrigues, C.I., Kidd, R.E., Frank, M.I., Hwu, W.W.: Auto-
matic discovery of coarse-grained parallelism in media applications. Transactions
on High-Performance Embedded Architectures and Compilers 1(1), 194–213 (2007)

15. Sagiv, M., Reps, T., Wilhelm, R.: Solving shape-analysis problems in languages
with destructive updating. In: Proceedings of the ACM Symposium on Program-
ming Languages, pp. 16–31 (January 1996)

16. Venet, A.: A scalable nonuniform pointer analysis for embedded programs. In:
Proceedings of the International Static Analysis Symposium, pp. 149–164 (2004)

17. Wu, P., Feautrier, P., Padua, D., Sura, Z.: Instance-wise points-to analysis for loop-
based dependence testing. In: Proceedings of the 16th International Conference on
Supercomputing, pp. 262–273 (2002)

http://www.mpegif.org/

V. Adve, M.J. Garzarán, and P. Petersen (Eds.): LCPC 2007, LNCS 5234, pp. 125–140, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Novel Asynchronous Software Cache Implementation
for the Cell-BE Processor

Jairo Balart1, Marc Gonzalez1, Xavier Martorell1, Eduard Ayguade1, Zehra Sura2,
Tong Chen2, Tao Zhang2, Kevin O’Brien2, and Kathryn O’Brien2

1 Barcelona Supercomputing Center (BSC), Technical University of Catalunya (UPC)
2 IBM TJ Watson Research Center

{jairo.balart,marc.gonzalez,xavier.martorell,
eduard.ayguade}@bsc.es,

{zsura,chentong,taozhang,caomhin,kmob}@us.ibm.com

Abstract. This paper describes the implementation of a runtime library for
asynchronous communication in the Cell BE processor. The runtime library im-
plementation provides with several services that allow the compiler to generate
code, maximizing the chances for overlapping communication and computa-
tion. The library implementation is organized as a Software Cache and the main
services correspond to mechanisms for data look up, data placement and re-
placement, data write back, memory synchronization and address translation.
The implementation guarantees that all those services can be totally uncoupled
when dealing with memory references. Therefore this provides opportunities to
the compiler to organize the generated code in order to overlap as much as pos-
sible computation with communication. The paper also describes the necessary
mechanism to overlap the communication related to write back operations with
actual computation. The paper includes the description of the compiler basic al-
gorithms and optimizations for code generation. The system is evaluated meas-
uring bandwidth and global updates ratios, with two benchmarks from the
HPCC benchmark suite: Stream and Random Access.

1 Introduction

In a system where software is responsible for data transfers between certain memory
regions, it is desirable to assist the programmer by automatically managing some or
all of these transfers in system software. For asynchronous data transfers, it is possible
to overlap the memory access time with computation time by initiating the data trans-
fer request in advance, i.e. before computation reaches the point when it needs to use
the data requested. The placement of such memory access calls in the code is impor-
tant since it can change the amount of overlap between data communication and com-
putation, and thus affect the overall performance of the application. In this work, we
target a Cell BE system to explore our approach to automatically managing asynchro-
nous data transfers. Our technique implements a software caching mechanism that
works differently from traditional hardware caching mechanisms, with the goal being
to facilitate the decoupling of the multiple steps involved in a memory access

126 J. Balart et al.

(including address calculation, cache placement, and data transfer) as well as the
actual use of the data. Software caching is not a novel proposal since it has been ex-
tensively used in specific domains, like embedded processors [4][5][6].

Our target platform, the Cell BE architecture [2], has nine processing cores on a
single chip: one 64-bit Power Processing Element (PPE core) and eight Synergistic
Processing Elements (SPE cores) that use 18-bit addresses to access a 256K Local
Store. The PPE core accesses system memory using a traditional cache-coherent
memory hierarchy. The SPE cores access system memory via a DMA engine con-
nected to a high bandwidth bus, relying on software to explicitly initiate DMA re-
quests for data transfer. The DMA engine can support up to 16 concurrent requests of
up to 16K, and bandwidth between the DMA engine and the bus is 8 bytes per cycle
in each direction. Each SPE uses its Local Store to buffer data transferred to and from
system memory. The bus interface allows issuing asynchronous DMA transfer re-
quests, and provides synchronization calls to check or wait for previously issued
DMA requests to complete.

The rest of this paper is organized as follows. In Section 2, we motivate the use of
a novel software cache organization for automatically managing asynchronous data
transfers. In Section 3, we detail the structure and implementation of this software
cache mechanism. In Section 4, we describe the compiler support needed to enable
effective use of the runtime software cache services. In Section 5, we evaluate basic
performance of our software caching technique using the Stream and Random Access
benchmarks from the HPCC benchmark suite. In Section 6 we present some conclud-
ing remarks.

2 Motivation

The particular memory model in the Cell BE processor poses several difficulties for
generating efficient code for the SPEs. The fact that each SPE owns a proper address
space within the Local Storage, plus the limitation on its size, 256Kb shared by data
and code, causes the performance being very sensible on how the communications are
scheduled along the computation. Overlapping computation with communication
becomes a crucial optimization.

When the access patterns in the computation can be easily predicted, static buffers
can be introduced by the compiler, double-buffering techniques can be exploited at
runtime, usually involving loop tiling techniques [1][7]. In the presence of pointer–
based accesses, the compiler is no longer able to transform the code in order to over-
lap communication and computation. Usually, this kind of access is treated by a run-
time library implementing a software cache [1]. The resulting code is difficult to be
efficient as every memory reference in the code has to be monitored in order to ensure
that the data is present in the Local Store, before any access to it takes place. This is
usually implemented through the instrumentation of every memory reference with a
runtime call responsible for the monitoring, where many checks have to occur. A
general protocol to treat a single memory reference could include the following steps:

1. Check if the data is already present in local storage
2. In case not present, decide where to place it and ...
3. If out of space, decide what to send out from Local Storage

 A Novel Asynchronous Software Cache Implementation for the Cell-BE Processor 127

4. If necessary, perform DMA operations
5. If necessary synchronize with DMA
6. Translate from virtual address space to Local Storage address space
7. Perform memory access

Under that execution model, the chances for overlapping computation with com-
munication are quite limited. Besides, the memory references instrumentation incurs
in unacceptable overheads. The motivation of this paper is to describe what should be
the main features within a software cache implementation that maximizes the chances
for overlapping computation and communication, and minimizes overhead related to
the memory references instrumentation.

Following the previous scheme, the overlap of communication with computation it
can only be implemented by uncoupling the DMA synchronization (step 5) from the
previous runtime checks (steps 1 to 4). If the runtime were to support such uncou-
pling, then it could be possible to reorganize the code, placing some amount of com-
putation between step 4 and step 5 of every reference. Notice that this optimization is
conditioned by the computation, in the sense that it might happen that data depend-
ences do not allow the code reorganization. Although that, decoupling steps 4 and 5
still can offer some important benefits. It is also possible to mix the 1, 2, 3, and 4
steps of two or more memory references and group all the DMA synchronization in
one single step. That would translate on some overlapping between cache manage-
ment code and data communication, reducing the overhead impact. But such overlap-
ping needs of some specific features within the implementation of steps 1, 2 and 3. It
is necessary that no conflict appears between steps 1, 2 and 3 of every memory refer-
ence treated before the synchronization step. That is, the placement and replacement
mechanisms must not assign the same cache line for two different memory references.
This is one point of motivation of the work in this paper: the implementation of a
software cache that enhances the chances for the overlapping of computation (whether
it is cache control code or application code) and data communication, by uncoupling
steps 4 and 5 and reducing the cache conflicts to capacity conflicts.

Because of the limited size of the Local Storage, it is necessary to provide the
cache implementation with a write back mechanism to send out data to main memory.
The write back mechanism involves a DMA operation moving data from the Local
Storage to main memory, and requires the SPE to synchronize with the DMA engine
before the flushed cache line is being reused. Deciding the moment to initiate the
DMA operation becomes an important issue to increase performance. If the write
back mechanism is invoked just when a modified cache line has to be replaced, then
the SPE is going to be blocked until the associated DMA operation ends. The imple-
mentation described in this paper introduces two mechanisms to minimize as much as
possible the number of lost cycles waiting for a DMA operation to complete (related
to a flush operation). First, a mechanism to foresee future flush operations, based on
information about what cache lines are referenced by the code, and detecting the pre-
cise moment where a cache line becomes unreferenced. Second, a specific replace-
ment policy that delays as much as possible the next assignment for a flushed cache
line, thus giving time to the flush operation to complete, and avoid lost cycles dedi-
cated to synchronization at the moment of reuse.

128 J. Balart et al.

3 Software Cache Implementation

The software cache is described according to the cache parameters, cache structures
and the main services: look up, placement/replacement policies, write back, commu-
nication/synchronization and address translation.

3.1 Cache Parameters

The main cache parameters are the following: capacity, size of cache line and associa-
tivity level. For the rest of this document C stands for capacity, L stands for the cache
line size, S stands for the level of associativity and N=C/L stands for the number of
cache lines.

3.2 Cache Structures

The cache is composed mainly by three structures. Two list-based structures, where
the cache lines can be placed depending on their state and attributes value. These are
the Directory and the Unused Cache Lines lists. A third structure under a table shape,
basically used for look up and translation operations: the Look Up and Translating
table.

• The Directory list holds all the cache lines that are resident in the cache.
• The Unused Cache Lines list holds all cache lines that are no longer in use

by the computation. The notion of being under use is defined by the exis-
tence of any memory reference in the computation that references the in-
use cache line. The cache implementation is able to keep track of what
cache lines are being referenced, and what are not.

• The Look Up and Translating table holds information for optimizing the
look up mechanism and for implementing the translation from the virtual
address space to the Local Storage address space.

3.2.1 Directory
The Directory is composed of S lists. Cache lines in the Directory are stored in a
double –linked list form. There is no limitation on the number of cache lines that can
be placed in any of the S lists. That makes the cache implementation a full-associative
cache. Basically the S lists are used as a hash structure to speed up the look up proc-
ess.

3.2.2 Unused Cache Lines List
This list holds the cache lines that were previously used by the computation, but
that at a given moment they were no longer in use. The main role for this structure
is related to the placement/replacement policy. Cache lines placed in this list be-
come the immediate candidates for replacement, thus placement for other incoming
cache lines required by the computation. The cache lines are stored in a double-
linked list form.

 A Novel Asynchronous Software Cache Implementation for the Cell-BE Processor 129

3.2.3 Look up and Translating Table
This structure is organized as a table, where each row is assigned to a particular
memory reference in the computation. A row contains three values used for the look
up and translation mechanisms: the base address of the cache line in the Local Storage
address space, the base address of the correspondent cache line in the virtual address
space and a pointer to the structure representing the cache being used by the memory
reference.

3.2.4 Cache Line State and Attributes
For every cache line, the implementation records information about the cache line
state and other attributes, necessary to control the placement/replacement, write back,
look up, and translation mechanisms.

The state of a cache line is determined by the fact any memory reference in the
computation referencing the cache line. The implementation keeps track of what
cache lines are under use, by maintaining a reference counter associated to each cache
line. The reference counter is incremented/decremented appropriately during the Look
Up mechanism. Therefore, the state of a cache line can take two different values:
USED or UNUSED. Besides the cache line state, there are other attributes:

 CLEAN: the cache line has been only used for READ memory operations.
The data stored in the cache line has not been modified.

 DIRTY: the cache line has been used for WRITE and/or READ memory
operations. The data stored in the cache line has been modified.

 FLUSHED: the cache line has already been flushed to main memory.
 LOCKED: the cache line is excluded from the replacement policy, which

means that a cache line holding this attribute can not be replaced.
 PARTITIONED: the data transfer from/to main memory involves a dif-

ferent amount of data than the actual cache line size. The total number of
bytes to be transferred is obtained by dividing the cache line size by a fac-
tor of 32.

The implementation also records the mapping between the cache line in the Local
Storage, and its associated cache line in virtual memory.

3.3 Look up

The Look Up mechanism is divided in two different phases. First phase takes place
within the computation code, second phase occurs inside the cache runtime system.
For the first phase of look up, it is necessary some coordination with the compiler
support. For each memory reference the implementation keeps track about the base
address for the cache line being accessed. This information is stored in the Look Up
and Translating table. Each time a new instance of a memory reference occurs, the
implementation checks if the referenced cache line has changed. If this happens, then
the second phase for the look up is invoked. Detecting if the cache line has changed is
as simple as performing an AND operation between the memory address generated in
the memory reference, and a particular mask value (in C syntax: ~(L-1)), plus a com-
parison with the value in the Look Up and Translating table. It is under the compiler
responsibility to assign an entry in the Look Up and Translating table for each

130 J. Balart et al.

memory reference in the code. Section 4.2 is giving the detailed description on how
this is implemented.

The second phase of the Look Up mechanism accesses the cache Directory looking
for the new required cache line. Only one of the S lists has to be selected to perform
the search. This is done through a hash function applied to the base address of the
cache line. The implementation ignores the offset bits, and takes all other most sig-
nificant bits. Then applies an S-modulo operation and determines one of the S lists.
The Look Up continues with the list traversal, and if the cache line is found, a hit is
reported. In case not, the placement/replacement mechanisms are invoked, and the
necessary DMA operations are programmed.

During the Look Up process, the reference counters for the two cache lines that are
going to be involved are incremented/decremented. For the cache line that is no
longer referenced by the memory reference, the counter is decremented. For the new
referenced cache line, the counter is incremented, no matter the Look Up ended with a
hit or miss.

At the end of the Look Up process the Look Up and Translating table is updated.
The row assigned to the memory reference the Look Up operation was treating is
appropriately filled: base address of the cache line in the Local Storage, base address
of the cache line in virtual memory and a pointer to the structure representing the
cache line.

3.4 Write Back

The Write Back mechanism only applies for modified cache lines, that is, those lines
that hold the DIRTY attribute. The write back is activated when the reference counter
of a modified cache line reaches the zero value. This event is interpreted by the im-
plementation as a hint of future possible uses of the cache line. Particularly, the event
is interpreted as if the cache line is not going to be referenced by the computation up
to its completion. Therefore, this point becomes a good opportunity to go in advance
to the needs of the computation and program the flush of the cache line, under an
asynchronous scheme. Notice that this is giving, but not ensuring, time to the imple-
mentation to overlap communication and computation. Of course, it is necessary at
some point to synchronize with the DMA operation. In order to do so, the implemen-
tation records the TAG used in the DMA operation, and delays the synchronization
until the next use of the cache line, when ever the replacement policy determines the
next reuse to happen.

3.5 Placement / Replacement

The Placement/Replacement mechanisms are executed during the second phase of
Look Up. The replacement policy relies on the reference counter and the Unused
Cache Lines list. When the cache line reference counter equals zero, the cache line is
placed on the Unused Cache Lines list as the LAST of the list, and as stated in previ-
ous section, if the line was modified, a flush operation is immediately programmed.
Notice that the cache line is not extracted from the Directory.

The Unused Cache Lines list contains the cache lines candidates for replacement
actions. When new data has to be brought in the cache, a cache line has to be selected.

 A Novel Asynchronous Software Cache Implementation for the Cell-BE Processor 131

If the Unused Cache Lines list is not empty, the implementation selects the FIRST in
the list. If the line is holding the FLUSHING attribute, the tag that was recorded dur-
ing write back execution is used to synchronize with the DMA engine. After that, a
DMA operation is programmed under an asynchronous scheme to bring in the data,
relying on the compiler for placing in the computation code the necessary synchroni-
zation statement. Notice that selecting the FIRST element in the list, while unused
cache lines are placed as LAST, is what separates as much as possible the DMA op-
eration associated to a flushed cache line, and its next reuse. Hence, delaying as much
as possible the execution of the necessary synchronization with the DMA engine and
avoiding unnecessary stalls in the SPE.

If the Unused cache Lines list is empty, then the replacement policy traverses the
Directory from set 0 to S-1, and selects the line that first entered in the cache. This is
implemented through the assignment of a number that is incremented each time a
cache line is brought in. The minimum number within all resident cache lines deter-
mines the cache line to be replaced. If the replaced line was modified, the line is
flushed to main memory under a synchronous scheme. After that, the data is brought
in through an asynchronous DMA operation, and relying on the compiler to introduce
the necessary synchronization statement. Notice that an appropriate relation between
the number of cache lines and the number of memory references might perfectly
avoid this kind of replacement, since it can be ensured that the list of unused cache
lines is never going to be empty (see section 4.6).

Initially, all cache lines are stored in both the Directory and the Unused Cache
Lines list, with the counter reference equaling zero.

3.6 Communications and Synchronization

The implementation distinguishes between DMA transfers related to write back op-
erations and DMA transfers responsible for bringing data into the cache. For the for-
mer case, a set of 15 tags are reserved, for the latter another different 15 tags. For both
cases tags are assigned in a round robin fashion, which means after 15 DMA opera-
tions tags start being reused.

All DMA operations assigned to the same tag, are executed always one after the
other. This is achieved through the use of fenced DMA operations that forbids the
memory flow controller to reorder any DMA operations associated to the same tag.
This becomes necessary for treating the following situation: suppose a modified cache
line is no longer in use, so it is flushed to main memory, and placed in the Unused
Cache Lines list. Then the code being executed references again the data in the cache
line, and since it was not extracted from the Directory, no miss is produced, but it is
necessary to extract the cache line from the Unused Cache Lines list. The cache line
might or might not be modified, but at some point the cache line will be no longer in
use. In the case the cache line was modified it will be flushed again. It is mandatory
for memory consistency that the two flush operations get never reordered. To ensure
that, the implementation reuses the same tag for both flush operations, and introduces
a “memory fence” between them.

All DMA operations are always programmed under an asynchronous scheme,
unless those associated to a replacement that found empty the Unused Cache Lines
list. Those related to flush operations, synchronize at the next reuse of the flushed

132 J. Balart et al.

cache line. Those related to bring data into the cache get synchronized by specific
statements introduced by the compiler. It is important to mention that this is what
allows the compiler to try to maximize the overlap between communication and
communication. Section 4 describes the necessary compiler support to achieve the
communication/computation overlapping.

3.7 Address Translation

To perform the translation from the virtual address space to the Local Storage address
space the data in the Look Up and Translating table is enough. Each memory refer-
ence has been assigned with a row in the Look Up and Translating table. In that row,
the base address for the cache line in the Local Storage can be obtained. Translation is
as simple as computing the offset of the access and add the offset to the base address
of the cache line in the Local Storage. The offset computation can be done through an
AND operation between the generated address in the memory reference and a bit
mask according to the size of the cache line (e.g: ~(L-1)).

4 Compiler Code Generation

This section describes the compiler support and code generation for transforming
programs to SPE executables relying on the software cache described in the previous
section. In this paper we describe the compiler support that is required to target the
execution of loops.

4.1 Basic Runtime Services

This section describes the main runtime available services which the compiler should
target while generating code.

• _LOOKUP: runtime service performing the phase 1 in the Look Up mechanism.
• _MMAP: runtime service executing phase 2 in the Look Up mechanism. In case a

miss is produced, then the placement/replacement mechanisms are executed, the ref-
erence counters are incremented/decremented, and the all necessary DMA operations
are performed asynchronously. In case the replacement algorithm indicates the use of
a previously flushed cache line, synchronization with the DMA engine occurs.

• _MEM_BARRIER: runtime service that forces the synchronization with the DMA
engine. It is a blocking runtime service.

• _LD, _ST: runtime services responsible for the address translation between the virtual
address space and the Local Storage address space. Include arithmetic pointer opera-
tions such as the computation of the offset in the access to the cache line base address
in virtual memory, and the computation of the actual Local Storage address by adding
the offset to the base address of the cache line in the Local Storage.

4.2 Code Generation

This section describes the basic algorithms and optimizations related to code generation.

 A Novel Asynchronous Software Cache Implementation for the Cell-BE Processor 133

4.2.1 Assign Identifiers to Memory References
The first step for the compiler is to assign a numerical identifier to each different
memory reference in the code. This identifier is going to be used at runtime to link
each memory reference to the runtime structure supporting the Look Up (phase one),
and the translating mechanisms. The runtime structure corresponds to one entry in
theLook Up and Translating table.

for (i=0;i<NUM_ITERS;i++) {
 v1[i] = v2[i];
 v3[v1[i]]++;
}

g

Fig. 1. Example of C code for code generation

For the example shown in Figure 1, three different memory references can be dis-
tinguished: v1[] , v2[] and v3[] . The compiler would fro example associate identifi-
ers 0, 1, 2 to memory references to v1[] , v2[] and v3[] respectively.

for (i=0;i<NUM_ITERS;i++) {
if (_LOOKUP(0, ,&v2[i],...)) {
 _MMAP(0,&v2[i],...);

 _MEM_BARRIER(0);
 }
 if (_LOOKUP(1, ,&v1[i],...)) {
 _MMAP(1,&v1[i],...);

 _MEM_BARRIER(1);
 }
 _LD(0,&v2[i],_int_tmp00);
 _ST(1,&v1[i],_int_tmp00);
 if (_LOOKUP(2, ,&v3[_int_tmp00],...)) {
 _MMAP(2,&v3[_int_tmp00],...);
 _MEM_BARRIER(2);
 }
 _LD(2,&v3[_int_tmp00],_int_tmp01);
 _int_tmp01++;
 _ST(2,&v3[_int_tmp00],_int_tmp01);
}

Fig. 2. Initial code transformation

4.2.2 Basic Code Generation
For every memory reference, the compiler has to inject code to check if the data
needed by the computation is in the Local Storage. The compiler injects a _LOOKUP
operation for every memory reference, and a conditional statement depending on the
output of the _LOOKUP operation. Figure 2 shows the transformed code for the ex-
ample in figure 1. All _MMAP operations are controlled by a _LOOKUP operation,
relying on the runtime structures pointed out by the assigned identifier according to
what has been described in the previous section. Right at the end on the conditional
branch, the compiler injects a _MEM_BARRIER operation that enforces the synchro-
nization with the DMA engine.

134 J. Balart et al.

_lb_01 = 0; _ub_01 = NELEM;
_work_01 = (_lb_01 < _ub_01);
while (_work_01) {
 _start_01 = _lb_01;
 _LOOKUP(0, ,&v2[i],...,_lookpu_01);
 if (_lookup_01) _MMAP(0, &v2[_start_01], ..., LOCK);
 _LOOKUP(1, ,&v1[i],...,_lookup_01);
 if (_lookup_01) _MMAP(1, &v1[_start_01], ..., LOCK);
 _next_iters_01 = LS_PAGE_SIZE;
 _NEXT_MISS(0, &v2[_start_01], float, sizeof(float), _next_iters_01);
 _NEXT_MISS(1, &v1[_start_01], float, sizeof(float), _next_iters_01);
 _end_01 = _start_01 + _next_iters_01;
 if (_end_01>_ub_01) _end_01 = _ub_01;
 _lb_01 = _end_01;
 _work_01 = (_lb_01 < _ub_01);
 _MEM_BARRIER();
 for (int i = _start_01; i < _end_01; i=i+1) {

 _LD(0,&v2[i],_int_tmp00);
 _ST(1,&v1[i],_int_tmp00);
 if (_LOOKUP(2, &v3[_int_tmp00],...)) {
 _MMAP(2,&v3[_int_tmp00],...);
 _MEM_BARRIER(2);
 }
 _LD(2,&v3[_int_tmp00],_int_tmp01);
 _int_tmp01++;
 _ST(2,&v3[_int_tmp00],_int_tmp01);
}

}

Fig. 3. Code transformation for stride accesses

This preliminary version of the transformed code does not allow any overlap be-
tween computation and communication. It contains unnecessary conditional state-
ments that for sure are not going to be optimal. Besides, it does not take into account
the different type of accesses in the code, distinguishing between strided accesses and
pointer-based accesses. But before describing any optimization technique, it is neces-
sary to outline what are the limitations that condition the compiler transformations.
Since the main target of the compiler is to enhance the overlapping of computation
(whether cache control code or original computation in the code) it is reasonable to
try to reorganize the preliminary code in order to group _MMAP operations, making
them to be executed at runtime right one after the other. Notice that such grouping
makes all the communication performed within a _MMAP operation, be overlapped
with the execution of the following _MMAP operations. In the example, the if state-
ments corresponding to the accesses to v1[i] and v2[i] could be joined. One if state-
ment should include the two _MMAP operations, and only one _MEM_BARRIER.
Generally, the compiler is only limited by the fact that grouping the _MMAP opera-
tions must be done taking to account the possibility of conflicts within the grouped
_MMAPs. A conflict may appear along the execution of several _MMAP operations
if two of them require the same cache line to bring data in the Local Storage. A con-
flict is not acceptable to appear before the data of the conflicting _MMAP operations
has been accessed. That is, between the execution of a particular _MMAP operation
and the _LD/_ST operations with the same identifier, it is not acceptable to place a
number of _MMAP operations that can cause a conflict. Since the cache implementa-
tion follows a full-associative scheme, conflicts may only appear as capacity conflicts.
This determines the limits on the grouping: the compiler can not group _MMAP op-
erations if doing so is causing that between a _LD/_ST operation and the correspond-
ing _MMAP operation (indicated by the identifier associated to _MMAP and

 A Novel Asynchronous Software Cache Implementation for the Cell-BE Processor 135

_LD/_ST operations) N _MMAP operations are executed, where N stands for the
number of cache lines. Formally, we define the distance of a _MMAP operation as the
maximum number of _MMAP operations between the _MMAP and the _LD/_ST op-
erations with the same identifier. The compiler is now free of reorganizing the code,
grouping _MMAP operations, as long as it keeps every _MMAP distance in the range
of [0..N].

4.3 Optimization for Strided Accesses

Strided accesses offer the possibility of reducing the number of the _MMAP opera-
tions that need to be performed during the execution of the loop. The basis for such
optimization is that the runtime can be provided with a service that computes how
many accesses are going to be produced along a cache line, given the starting address
and the stride. This information can be used to partition the iteration space in different
chunks, defining the initial iteration of each chunk, a change of cache line (actually a
miss) in a strided memory access.

Figure 3 shows the compiler code for the example code in Figure 1. Notice that the
original loop, has been embedded in an outer while loop. The while loop iterates along
the chunks of iterations, and the inner loop iterates along the actual iteration space. The
use of the runtime service _NEXT_MISS computes the number of iterations that can be
performed without having a miss on that access, given an initial address and a stride.
For every strided access, the _NEXT_MISS service is invoked, and the minimum of
these values defines the number of iterations for the next chunk. In the example, the two
stride accesses are treated with two _MMAP operations that are going to overlap the
communication of the first one with the cache control code of the second one.

Notice the attribute LOCK provided to the runtime system _MMAP, that ensures
that the mapped cache line is going to be excluded from the replacement policies.
This causes the runtime to treat the memory references in the inner loop, with a dif-
ferent distance boundary, since now the compiler has to assume 2 less available cache
lines in the overall cache capacity. A _MEM_BARRIER is placed right before the
inner loop execution ensuring that the data is resent before the next chunk of
iterations is executed. This synchronization only involves incoming data to the Local
Storage. Write back operations executed along the _MMAP runtime service corre-
sponding to the v1[i] access operation, are synchronized whenever the cache lines
associated to this access are being reused.

4.4 Optimization for Non-strided Accesses

Non-strided accesses become an important source of overhead, since they do not
usually spatial locality. Therefore, overlapping computation and communication for
this type of access should be highly desirable. Figure 4 shows the compiler transfor-
mation for this kind of access, corresponding to the v3[v1[i]] access in the example in
Figure 1. Only the innermost loop where the non-stride access is placed is showed.
The loop has been unrolled 2 times, offering the possibility of grouping the 2
_MMAP operations associated to that access. The 2 factor has been only used as ex-
ample, since the limit on the unrolling factor is going to be determined by the number

136 J. Balart et al.

for (int i = _start_01; i < _end_01; i=i+2) {
 _LD(0,&v2[i],_int_tmp00);
 _ST(1,&v1[i],_int_tmp00);
 _LD(0,&v2[i+1],_int_tmp02);
 _ST(1,&v1[i+1],_int_tmp02);
 _LOOKUP(2, &v3[_int_tmp00],..., _lookup_01)
 _LOOKUP(2, &v3[_int_tmp02],..., _lookup_01)
 if (_look_up_01) {
 _MMAP(2,&v3[_int_tmp00],...);
 _MMAP(3,&v3[_int_tmp02],...);
 _MEM_BARRIER(2);
 }
 _LD(2,&v3[_int_tmp00],_int_tmp01);
 _int_tmp01++;
 _ST(2,&v3[_int_tmp00],_int_tmp01);

 _LD(3,&v3[_int_tmp02],_int_tmp03);
 _int_tmp03++;
 _ST(3,&v3[_int_tmp02],_int_tmp03);
}

Fig. 4. Code transformation for non-stride accesses

of cache lines, minus 2 (two cache lines have been locked for v1 and v2 accesses), as
the distance boundary has to be preserved for all _MMAP operations. Notice that the
compiler has to assign different identifiers for both accesses to v3 vector, since they
define two different memory references.

4.5 Setting the Cache Line Size

Depending on the number of memory references detected in the code, the cache line
size has to be adapted to avoid unnecessary capacity conflicts within the execution of
a loop iteration. If the number of references exceeds the number of cache lines, then
conflicts are quite probable to appear. Therefore, the compiler has to select a cache
line size that ensures that the number of available cache lines is greater or equal that
the number of memory references.

5 Evaluation

The software cache implementation has been tested with two benchmarks from the
HPCC benchmark suite [3]: Stream and Random Access. The Stream benchmark
measures bandwidth ratios. It is composed by four synthetic kernels that measure
sustainable memory bandwidth (in GB/s) and the corresponding computation rate for
simple vector codes. The Random Access benchmark is composed by one kernel that
operates on a single vector data type. The benchmark computes Global Updates per
Second (GUPS). GUPS are calculated by identifying the number of memory locations
that can be randomly updated in one second, divided by 1 billion (1e9). The term
"randomly" means that there is little relationship between one address to be updated
and the next, except that they occur in the space of 1/2 the total system memory.

All the measures were taken in a Cell BE-based blade machine with two Cell
Broadband Engine processors at 3.2 GHz (SMT enabled), with 1 GB XDR RAM (512
MB each processor), running Linux Fedora Core 6 (Linux Kernel 2.6.20-CBE).

 A Novel Asynchronous Software Cache Implementation for the Cell-BE Processor 137

The software cache implementation was configured with the following cache pa-
rameters: 64Kb of capacity, 1024 sets and a varying cache line size ranging from 128
bytes up to 4096 bytes.

5.1 Stream Benchmark

Figure 5 shows the comparison between three different implementations, differing in
the way the communications are managed. The Synchronous version forces a DMA
synchronization after every DMA operation is programmed. This version corresponds
to an implementation that would not allow for any overlapping between computation
and communication. The Synchronous Flush version, allows for having asynchronous
data communication from main memory to the Local Storage, but implements the
flush operations (transfers from Local Storage to main memory) under a synchronous
scheme. This version is not using the reference counter for cache lines, as a hint for
determining the moment where a cache line has to be flushed before any reuse of it is
required. Finally, the Asynchronous version, implements the software cache described
in this paper, trying to maximize the overlapping of computation and communication.

For every version, the performance of each kernel (Copy, Scale, Add and Triad) is
shown varying the size of the cache line (128, 256, 512, 1024, 2048 and 4096 bytes,
from left to right). The results correspond to the obtained performance while execut-
ing with 8 SPEs. For brevity, the results executing with 1, 2 and 4 SPEs have been
omitted as they were showing a very similar behavior. Clearly, and as it could be
expected, every version significantly improves as long as the cache line size is in-
creased. The comparison of the three versions allows for measuring the capabilities of
the software cache implementation to overlap computation and communication. The
results for the Synchronous version are taken as a baseline to be improved by the two
other versions. The performance for the 128 bytes executions show how the different
kernels behave while being dominated by the DMA operations.

The Synchronous version reaches 1.26 Gb/sec in average for the 4 kernels, the
Synchronous Flush version reaches 1.75 Gb/sec, and finally the Asynchronous ver-
sion reaches 2.10 Gb/sec. This corresponds to a speed up about 1.66. Similar behav-
ior is observed when the cache line is increased from 128 up to 2048, reaching the
best performance with a 2048 cache line size: 9.17 Gb/sec for Synchronous, 10.46 for

8 SPEs comparisson

0

2

4

6

8

10

12

14

G
b

/s
ec

o
n

d

Synchronous Asynchronous Synchronous Flush

Copy Add Scale Triad Copy Add Scale Triad Copy Add Scale Triad

Fig. 5. Code transformation for non-stride accesses

138 J. Balart et al.

Synchronous Flush and 11.38 for Asynchronous. This corresponds to a speed up
about 1.24. Notice that when the cache line size is 4096, the increment of perform-
ance is not sustained. For the moment, it is not clear the reason of that behavior, so
this needs more study.

5.2 Random Access Benchmark

The Random Access benchmark is used for evaluate the overlapping of computation
and communication when the parallel code includes pointer-based memory accesses.
Four different versions of the benchmark have been evaluated, depending on the un-
roll factor in the loop computation. Figure 6 shows the core of the computation. The
unroll factor determines how many DMA transfers can be overlapped for the memory
references to variable Table, according to the transformation described in section 4.5.
For a 2 unroll factor, 2 _MMAP operations can be executed one immediate after the
other. An unroll factor of 4 allows for overlapping 4 _MMAP operations, a factor of 8
allows for overlapping 8 _MMAP operations.

for (i=0; i<NUPDATE/128; i++) {
 for (j=0; j<128; j++) {

 ran[j] = (ran[j] << 1) ^ ((s64Int) ran[j] < 0 ? POLY : 0);
 Table[ran[j] & (TableSize-1)] ^= ran[j];
}

}

Fig. 6. Source code for Random Access benchmark

Figure 7 shows the results executing with 1 and 8 SPEs. The cache line size has
been set to 4096, but the access to the Table variable it is performed with he
PARTITIONED attribute, which makes every DMA transfer just involve 4096/32 =
128 bytes of data. This shows the ability of the software cache implementation to deal
with both strided accesses and non strided accesses. The base line measurement corre-
sponds to the version with no loop unrolling. The Y axis measures GUPS (Giga Up-
dates per Second). The 1-SPE version significantly improves while the unrolling
factor is increased. Improvements are about 30%, 56% and 73% with 2, 4 and 8 unroll
factors respectively. Similar improvements are observed in the 8-SPE version.

Random Access

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

1 8

Number of SPEs

G
U
P
S

No unroll

Unroll 2

Unroll 4

Unroll 8

Fig. 7. Performance for Random Access

 A Novel Asynchronous Software Cache Implementation for the Cell-BE Processor 139

Although the difference in performance between the non-unrolled and the 8-urolled
versions, we have detected a limiting factor due to the relation between the execution
time for the _MMAP runtime service, and the DMA time for small data transfers
(e.g.: 128 bytes). Small transfers perform very fast in the Cell-BE so they do not offer
many chances for overlapping unless the execution time for the _MMAP service is
such that can be fitted several times in one DMA transfer. The measurement for the
Random Access show that our implementation is limited to the overlapping of 8
_MMAP operations for small DMA transfers. This suggests further study on how to
optimize the _MMAP mechanism.

6 Conclusions

This paper describes the main features that have to be included in the implementation
of a software cache implementation for the Cell BE processor, in order to maximize
the chances for overlapping computation and communication.

It has been proved that a full-associative scheme offers better chances for overlap-
ping computation and communication. It also has been pointed out the necessity of
providing with mechanisms to detect the precise moment to initiate write back opera-
tions. This translates to overlapping the data transfer from the cache to main memory
with actual computation, since the implementation guarantees that the necessary syn-
chronization associated to the write back operation is going to be produced at next
reuse of the flushed cache line. Besides, this is accompanied with a replacement pol-
icy that tends to increase the time between a use / reuse of the same cache line. Thus,
delaying as much as possible the synchronization point and giving the hardware the
necessary time to complete the data transfer.

The implementation has been evaluated with two benchmarks in the HPCC suite:
Stream and Random Access. For both benchmarks, improvements are significant,
ranging from 1.25 and 1.66 of speed up.

Acknowledgement

This work has been supported by the Ministry of Education of Spain under contract
TIN2007-60625, and IBM in the context of the SOW Cell project. We would like also
to acknowledge the Barcelona Supercomputing Center for letting us access to its Cell
BE-based blades, provided by IBM through the SUR Program.

References

1. Eichenberger, A.E., O’Brien, K., O’Brien, K., Wu, P., Chen, T., Oden, P.H., Prener, D.A.,
Shepherd, J.C., So, B., Sura, Z.: Optimizing Compiler for a Cell Processor. In: 14th Parallel
Architectures and Compilation Techniques, Saint Louis (Missouri) (September 2005)

2. Kistler, M., Perrone, M., Petrini, F.: Cell Multiprocessor Communication Network: Built for
Speed. IEEE Micro 26(3), 10–23 (2006)

140 J. Balart et al.

3. Luszczek, P., Bailey, D., Dongarra, J., Kepner, J., Lucas, R., Rabenseifner, R., Takahashi,
D.: The HPC Challenge (HPCC) Benchmark Suite. In: SC 2006 Conference Tutorial. IEEE,
Los Alamitos (2006)

4. Wang, Q., Zhang, W., Zang, B.: Optimizing Software Cache Performance of Packet Proc-
essing Applications. In: LCTES 2007 (2007)

5. Dai, J., Li, L., Huang, B.: Pipelined Execution of Critical Sections Using Software-
Controlled Caching in Network Processors. In: Proceedings of the International Symposium
on Code Generation and Optimization table of contents, pp. 312–324 (2007), ISBN:0-7695-
2764-7

6. Ravindran, R., Chu, M., Mahlke, S.: Compiler Managed Partitioned Data Caches for Low
Power. In: LCTES 2007 (2007)

7. Chen, T., Sura, Z., O’Brien, K., O’Brien, K.: Optimizing the use of static buffers for DMA
on a Cell chip. In: 19th International Workshop on Languages and Compilers for Parallel
Computing, New Orleans, Louisiana, November 2-4 (2006)

Pillar: A Parallel Implementation Language

Todd Anderson, Neal Glew, Peng Guo, Brian T. Lewis, Wei Liu, Zhanglin Liu,
Leaf Petersen, Mohan Rajagopalan, James M. Stichnoth, Gansha Wu, and Dan Zhang

Microprocessor Technology Lab, Intel Corporation

Abstract. As parallelism in microprocessors becomes mainstream, new prog-
ramming languages and environments are emerging to meet the challenges of
parallel programming. To support research on these languages, we are develop-
ing a low-level language infrastructure called Pillar (derived from Parallel Imple-
mentation Language). Although Pillar programs are intended to be automatically
generated from source programs in each parallel language, Pillar programs can
also be written by expert programmers. The language is defined as a small set of
extensions to C. As a result, Pillar is familiar to C programmers, but more im-
portantly, it is practical to reuse an existing optimizing compiler like gcc [1] or
Open64 [2] to implement a Pillar compiler.

Pillar’s concurrency features include constructs for threading, synchroniza-
tion, and explicit data-parallel operations. The threading constructs focus on cre-
ating new threads only when hardware resources are idle, and otherwise executing
parallel work within existing threads, thus minimizing thread creation overhead.
In addition to the usual synchronization constructs, Pillar includes transactional
memory. Its sequential features include stack walking, second-class continua-
tions, support for precise garbage collection, tail calls, and seamless integration of
Pillar and legacy code. This paper describes the design and implementation of the
Pillar software stack, including the language, compiler, runtime, and high-level
converters (that translate high-level language programs into Pillar programs). It
also reports on early experience with three high-level languages that target Pillar.

1 Introduction

Industry and academia are reacting to increasing levels of hardware concurrency in
mainstream microprocessors with new languages that make parallel programming ac-
cessible to a wider range of programmers. Some of these languages are domain-specific
while others are more general, but successful languages of either variety will share key
features: language constructs that allow easy extraction of high levels of concurrency,
a highly-scalable runtime that efficiently maps concurrency onto available hardware
resources, a rich set of synchronization constructs like futures and transactions, and
managed features from modern languages such as garbage collection and exceptions.
In addition, these languages will demand good sequential performance from an opti-
mizing compiler. Implementing such a language will require a sizable compiler and
runtime, possibly millions of lines of code.

To reduce this burden and to encourage experimentation with parallel languages, we
are developing a language infrastructure called Pillar (derived from Parallel Implemen-
tation Language). We believe that key parts of the compilers and runtimes for these

V. Adve, M.J. Garzarán, and P. Petersen (Eds.): LCPC 2007, LNCS 5234, pp. 141–155, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

142 T. Anderson et al.

Pillar
compiler

Object code
& metadata

Pillar
program

Parallel
program

Pillar
runtime

GC
interface McRT

Language
converter

Language-
specific
runtime

Garbage
collector

Run-time
executable

Metadata
decoder

Pillar runtimeHigh-level converter

Pillar compiler

Compile-time
tool chain

Fig. 1. The Pillar architecture and software stack

languages will have strong similarities. Pillar factors out these similarities and provides
a single set of components to ease the implementation and optimization of a compiler
and its runtime for any parallel language. The core idea of Pillar is to define a low-level
language and runtime that can be used to express the sequential and concurrency fea-
tures of higher-level parallel languages. The Pillar infrastructure consists of three main
components: the Pillar language, a Pillar compiler, and the Pillar runtime.

To implement a parallel language using Pillar, a programmer first creates a high-
level converter (see Fig. 1). This converter translates programs written in the parallel
language into the Pillar language. Its main task is to convert constructs of the parallel
language into Pillar constructs. The Pillar language is based on C and includes a set
of modern sequential and parallel features (see Section 2). Since the Pillar compiler
handles the tasks of code generation and traditional compiler optimizations, creating a
high-level converter is significantly easier than creating a new parallel language com-
piler from scratch.

The second step is to create a runtime for the high-level language that provides
the specialized support needed for that language’s features. We call this runtime the
language-specific runtime (LSR) to distinguish it from the Pillar runtime. The LSR
could be written in Pillar and make use of Pillar constructs, or could be written in a
language such as C traditionally used for runtime implementation. In either case, the
Pillar code generated by the converter can easily call the LSR where necessary. The
LSR can also make use of Pillar’s runtime that, in addition to supporting the Pillar im-
plementation, provides a set of services for high-level languages such as stack walking
and garbage collection (GC) support. The Pillar runtime is layered on top of McRT, the
Multi-Core RunTime [3], which provides scheduling, synchronization, and software
transactional memory services.

Once the converter and LSR are written, complete executables can be formed by
compiling the converted Pillar code with the Pillar compiler to produce object code,
and then linking this with the LSR, the Pillar runtime, and McRT. The Pillar compiler
produces both object code and associated metadata. This metadata is used by the Pil-
lar runtime to provide services such as stack walking and root-set enumeration, and

Pillar: A Parallel Implementation Language 143

because of it, the code is said to be managed. (Pillar also supports integration with non-
Pillar code, such as legacy code, which is said to be unmanaged.) The Pillar compiler
controls the metadata format, and provides its own metadata decoder library to interpret
it to the Pillar runtime. The metadata and decoder are also linked into the executable.

The design and implementation of Pillar is still in its early phases, and currently has
a few key limitations: most notably, a cache-coherent shared-memory hardware model.
Another consequence is that we are not yet in a position to do meaningful performance
analysis, so this paper does not present any performance results. We intend to address
these issues in the future, and we also hope to increase the range of high-level languages
that can target Pillar.

The following sections focus on the Pillar language, compiler, and runtime.

2 The Pillar Language

The Pillar language has several key design principles. First, it is a compiler target lan-
guage, with the goal of mapping any parallel language onto Pillar while maintaining
that language’s semantics. As such, Pillar cannot include features that vary across high-
level languages, like object models and type-safety rules. C++, C#, and Java, for ex-
ample, are too high-level to be effective target languages, as their object models and
type-safety rules are not appropriate for many languages. Therefore, of necessity, Pil-
lar is a fairly low-level language. Although most Pillar programs will be automatically
generated, expert programmers must be able to directly create Pillar programs. As a
result, assembly and bytecode languages are too low-level since they are difficult even
for experts to use. Although inspired by C-- [4,5], we decided to define Pillar as a set
of extensions to C because then we could utilize existing optimizing C compilers to get
quality implementations of Pillar quickly.

Since the Pillar language is based on C, type safety properties of the source paral-
lel language must be enforced by the high-level converter. For example, array bounds
checks might be implemented in Pillar using a combination of explicit tests and con-
ditional branches. Similarly, null-dereference checks, divide-by-zero checks, enforcing
data privacy, and restricting undesired data accesses must be done at a level above the
Pillar language by the high-level converter. One notable exception is that we are work-
ing on annotations to express immutability and disambiguation of memory references.

Second, Pillar must provide support for key sequential features of modern program-
ming languages. Examples include garbage collection (specifically, the ability to iden-
tify live roots on stack frames), stack walking (e.g., for exception propagation), proper
tail calls (important when compiling functional languages), second-class continuations
(e.g., for exception propagation and backtracking), and the ability to make calls between
managed Pillar code and unmanaged legacy code.

Third, Pillar must also support key concurrency features of parallel languages, such
as parallel thread creation, transactions, data-parallel operations, and futures. Fig. 2
summarizes the syntax of the Pillar features added to the C language. These features
are described in the following sections.

144 T. Anderson et al.

Sequential constructs
Feature Syntax example

Second-class continuation k(a, b, c):
continuations cut to k(x, y, z);
Alternate foo() also cuts to k1, k2;
control flow foo() also unwinds to k3, k4;

foo() never returns;
Tail call tailcall foo();
Spans span TAG value { · · · }

Virtual stack VSE(k) { · · ·
and destructors continuation k(target):

· · ·
cut to target;

}

GC references ref obj;
Managed/ #pragma managed(off)
unmanaged #include <stdio.h>

calls #pragma managed(on)
· · ·
printf(· · ·);

Concurrency constructs
Feature Syntax example

Pcall pcall(aff) foo(a, b, c);
Prscall prscall(aff) foo(a, b, c);
Futures fcall(aff, &st) foo(a, b, c);

ftouch(&st);
fwait(&st);

Trans- TRANSACTION(k) {
actions · · ·

continuation k(reason):
if (reason==RETRY)

· · ·
else if (reason==ABORT)

· · ·
}

Fig. 2. Pillar syntactic elements

2.1 Sequential Features

Second-class continuations: This mechanism is used to jump back to a point in an
older stack frame and discard intervening stack frames, similar to C’s setjmp/longjmp
mechanism. The point in the older stack frame is called a continuation, and is declared
by the continuation keyword; the jumping operation is called a cut and allows
multiple arguments to be passed to the target continuation. For any function call in
Pillar, if the target function might ultimately cut to some continuation defined in the
calling function rather than returning normally, then the function call must be annotated
with all such continuations (these can be thought of as all alternate return points) so that
the compiler can insert additional control flow edges to keep optimizations safe.

Virtual stack elements: A VSE (virtual stack element) declaration associates a clean-
up task with a block of code. The “virtual stack” terminology is explained in Section 5.2.
This cleanup task is executed whenever a cut attempts to jump out of the region of code
associated with the VSE. This mechanism solves a problem with traditional stack cut-
ting (such as in C--) where cuts do not compose well with many other operations. For
example, suppose that code executing within a transaction cuts to some stack frame
outside the transaction. The underlying transactional memory system would not get no-
tified and this is sure to cause problems during subsequent execution. By using a VSE
per transaction, the transactional memory system in Pillar is notified when a cut at-
tempts to bypass it and can run code to abort or restart the transaction. Since cuts in
Pillar compose well with all the features of Pillar, we call them composable cuts.

Pillar: A Parallel Implementation Language 145

Stack walking: The Pillar language itself has no keywords for stack walking, but the
Pillar runtime provides an interface for iterating over the stack frames of a particular
thread. Pillar has the also unwinds to annotation on a function call for providing
a list of continuations that can be accessed during a stack walk. This is useful for im-
plementing exception propagation using stack walking, as is typical in C++, Java, and
C# implementations.

Spans: Spans are a mechanism for associating specific metadata with call sites within
a syntactic region of code, which can be looked up during stack walking.

Root-set enumeration: Pillar adds a primitive type called ref that is used for declar-
ing local variables that should be reported as roots to the garbage collector. During stack
walking these roots can be enumerated. The ref type may also contain additional pa-
rameters that describe how the garbage collector should treat the reference: e.g., as a
direct object pointer versus an interior pointer, as a weak root, or as a tagged union
that conditionally contains a root. These parameters have meaning only to the garbage
collector, and are not interpreted by Pillar or its runtime. If refs escape to unmanaged
code, they must be wrapped and enumerated specially, similar to what is done in Java
for JNI object handles.

Tail calls: The tailcall keyword before a function call specifies a proper tail call:
the current stack frame is destroyed and replaced with the callee’s new frame.

Calls between managed and unmanaged code: All Pillar function declarations are
implicitly tagged with the pillar attribute. The Pillar compiler also understands a spe-
cial pragma that suppresses the pillar attribute on function declarations; this pragma is
used when including standard C header files or defining non-Pillar functions.1 Calling
conventions and other interfacing depend on the presence or absence of the pillar at-
tribute in both the caller and callee, and the Pillar compiler generates calls accordingly.

Note that spans, second-class continuations, and stack walking are C-- constructs
and are described in more detail in the C-- specification [6].

2.2 Concurrency Features

Pillar currently provides three mechanisms for creating new logical threads: pcall,
prscall, and fcall. Adding the pcall keyword in front of a call to a function with
a void return type creates a new child thread, whose entry point is the target function.
Execution in the original parent thread continues immediately with the statement fol-
lowing the pcall. Any synchronization or transfer of results between the two threads
should use global variables or parameters passed to the pcall target function.

The prscall keyword is semantically identical to pcall, but implements a par-
allel-ready sequential call [7]. Prscalls allow programs to specify potential paral-
lelism without incurring the overhead of spawning parallel threads if all processors are
already busy. A prscall initially starts running the child thread as a sequential call
(the parent is suspended). However, if a processor becomes free, it can start executing
the parent in parallel with the child. Thus, prscalls are nearly as cheap as normal
procedure calls, but take advantage of free processors when they become available.

1 One particularly pleasing outcome of this syntax is that managed Pillar code and unmanaged
C code can coexist within the same source files.

146 T. Anderson et al.

The fcall construct can be used to parallelize programs that have certain serial-
izable semantics. The fcall annotation indicates that the call may be executed con-
currently with its continuation, while allowing the call to be eagerly or lazily serialized
if the compiler or runtime deems it unprofitable to parallelize it. The st parameter to
the fcall is a synchronization variable, called a future, that indicates the status of
the call: empty indicates that the call has not yet been started, busy indicates that the
call is currently being computed, and full indicates that the call has completed. Two
forcing operations are provided for futures: ftouch and fwait. If the future is full,
both return immediately; if the future is empty, both cause the call to be run sequen-
tially in the forcing thread; if the future is busy, fwait blocks until the call completes
while ftouch returns immediately. The serializability requirement holds if, for each
future, its first ftouch or fwait can be safely replaced by a call to the future’s target
function.

Both prscall and fcall are geared toward an execution environment where pro-
grams have a great deal of available fine-grain concurrency, with the expectation that the
vast majority of calls can be executed sequentially within their parents’ context instead
of creating and destroying a separate thread.

These three keywords take an additional affinity parameter [8] that helps the sched-
uler place related threads close to each other to, e.g., improve memory locality.

Pillar provides support for transactions. A syntactic block of code is marked as a
transaction, and transaction blocks may be nested. Within the transaction block, trans-
actional memory accesses are specially annotated, and a continuation is specified as the
“handler” for those situations where the underlying transactional memory system needs
the program to respond to situations like a data conflict or a user retry.

The concurrency constructs described so far relate to lightweight thread-level paral-
lelism. To support data parallelism, we intend to add Ct primitives [9] to Pillar. These
primitives express a variety of nested data-parallel operations, and their semantics allow
the compiler to combine and optimize multiple such operations.

3 Compiler and Runtime Architecture

The design of the Pillar language and runtime has several consequences for the Pillar
compiler’s code generation. In this section, we discuss some of the key interactions
between the compiler-generated code and the runtime before getting into more detailed
discussion of the compiler and the runtime in the following sections.

We assume that threads are scheduled cooperatively: that they periodically yield con-
trol to each other by executing yield check operations. Our experience shows that coop-
erative preemption offers several performance advantages over traditional preemptive
scheduling in multi-core platforms [3]. The Pillar compiler is expected to generate a
yield check at each method entry and backward branch, a well-known technique that
ensures yielding within a bounded time. In addition to timeslice management, cooper-
ative preemption is used on a running thread to get race-free access to a target thread’s
stack, for operations like root-set enumeration and prscall continuation stealing.

As we explain in Section 5, our prscall design allows threads to run out of stack
space. This requires compiled code to perform an explicit limit check in the method

Pillar: A Parallel Implementation Language 147

Compiler phase Pillar changes Percentage of GC-related
compiler code Pillar changes

Front-end 5 Kloc 1.2% 5.8%
Middle-end 6 Kloc 0.5% 1.2%
Back-end 11 Kloc 4.2% 20.7%

Total 22 Kloc 1.3% 12.0%

Fig. 3. Compiler modification statistics

prolog, jumping to a special stack extension routine if there is insufficient space for this
method’s stack frame. This strategy for inserting such copious limit and yield checks is
likely to have a noticeable performance impact; future research will focus on mitigating
these costs.

Stack walking operations like span lookup, root-set enumeration, and single-frame
unwinding require the compiler to generate additional metadata for each call site. One
approach would be to dictate a particular metadata format that a Pillar compiler must
adhere to. Another approach, which we adopted, is to let the Pillar compiler decide on its
own metadata format, and to specify a runtime interface for metadata-based operations.
This means that the Pillar compiler also needs to provide its own library of metadata-
decoding operations to be linked into Pillar applications, and the Pillar runtime calls
those routines as necessary. We favor this latter approach because it gives the compiler
more flexibility in generating optimized code.

4 The Pillar Compiler

We implemented our prototype Pillar compiler by modifying Intel’s product C compiler.
The compiler consists of a front-end, middle-end, and back-end, all of which we modi-
fied to support Pillar. Fig. 3 shows the number of lines of source code (LOC) changed or
added, as well as the percentage of those source lines compared to those of the original
code base. The front-end modifications are relatively small, limited to recognizing new
Pillar lexical and syntax elements and translating them into the high-level intermediate
representation (IR). In the middle- and back-end, our changes included adding new at-
tributes and nodes to the existing IR and propagating them through compilation phases,
as well as generating additional metadata required at run time. In addition, we added
new internal data structures to accommodate Pillar constructs (e.g., continuations) and
the necessary new analyses and phases (e.g., GC-related analysis).

Some Pillar constructs are implemented as simple mappings to Pillar runtime rou-
tines. These include some explicit Pillar language constructs, such as cut to, pcall,
prscall, and fcall, as well as implicit operations such as stack limit checks, stack
extension, yield checks, and managed and unmanaged transitions. The compiler may
partially or fully inline calls to the runtime routines to improve performance. Fig. 4
gives an example showing how the compiler deals with some of these constructs:

1. The compiler calculates the function’s frame size and generates the stack limit
check and extension in the prolog (line 5).

148 T. Anderson et al.

2. For cooperative scheduling, the compiler needs to generate the yield check in the
prolog and at loop back-edges (line 5 & 11).

3. For Pillar concurrency constructs (pcall, prscall, and fcall), the compiler
maps them to corresponding Pillar runtime interface functions (line 9).

4. When calling unmanaged C functions, the compiler automatically generates the
transition call to the runtime routine prtInvokeUnmanaged (line 10).

Other Pillar constructs required deeper compiler changes. Continuation data struc-
tures must be allocated on the stack and initialized at the appropriate time. The con-
tinuation code itself must have a continuation prolog that fixes up the stack after a
cut operation and copies continuation arguments to the right places. Continuations
also affect intra-method control flow and register allocation decisions. The VSE and
TRANSACTION constructs require control-flow edges into and out of the region being
split so that a VSE is always pushed upon entry and popped upon exit (the push and pop
operations are implemented as inlinable calls to the Pillar runtime). For every call site,
the compiler must generate metadata to support runtime stack walking operations, such
as unwinding a single frame, producing span data, and producing the set of live GC ref-
erences. Tracking live GC references constitutes the most invasive set of changes to a C
compiler, as the new ref type must be maintained through all IR generation and opti-
mization phases. GC-related changes account for about 20% of the Pillar modifications
in the back-end, and a very small fraction of the front-end and middle-end changes.

Some Pillar constructs need special treatment when implementing function inlining.
First, the compiler cannot inline functions containing tailcall. Second, if the com-
piler decides to inline a call, and that call site contains explicit or implicit also cuts
to and also unwinds to annotations, then all call sites within the inlined method
inherit these annotations. (Implicit also cuts to annotations arise from calls inside a
VSE or TRANSACTION construct—there is an implicit cut edge to the destructor con-
tinuation.) Third, the compiler needs to maintain extra metadata to support intra-frame
unwinding, to ensure that the stack trace looks identical regardless of inlining decisions.

Even though some deep compiler changes were required, we are pleased that the
changes only amounted to about 1–2% of the code base of a highly-optimizing

1 #pragma managed(off)
2 #include <stdio.h>
3 #pragma managed(on)
4
5 void pillar_main()
6 {
7 int i;
8 for (i = 0; i < 10; i++) {
9 pcall(i) task(i);
10 printf(“Hello pillar!\n”);
11 }
12 }Thread yield

Auto generated
prtInvokeUnmanaged

prtPcall

Thread yield

Stack check & extend

Fig. 4. A Pillar example

Pillar: A Parallel Implementation Language 149

production C compiler, and that they preserved the compiler’s traditional optimizations.2

Of those changes, about 12% overall were related to GC, which is the single most inva-
sive Pillar feature to implement. We believe that Pillar support could be added to other
optimizing compilers at a similarly low cost.

One limitation of basing the Pillar compiler on an existing large C compiler is that
we are constrained to using Pillar constructs that can be fitted onto C. It would be hard,
for example, for us to support struct layout control or multiple return values. The more
non-C features we choose to support, the more work we would incur in modifying the
compiler to support them. We believe we have chosen a reasonable point in the language
design space for Pillar.

5 The Pillar Runtime

The Pillar runtime (PRT) provides services such as stack walking, root-set enumeration,
parallel calls, stack management, and virtual stack support to compiled Pillar code and
to an LSR. It is built on top of McRT [3], which the PRT relies on primarily for its
scheduling and synchronization services, as well as its software transactional memory
implementation [10]. The PRT interface is nearly independent of the underlying hard-
ware: its architecture-specific properties include registers in the stack frame information
returned by the stack walking support, and the machine word size. The remainder of this
section provides some details on how the PRT supports its services.

5.1 Stack Walking and Root-Set Enumeration

The PRT provides support for walking the stack of a thread and enumerating the GC
roots in its frames. To do this, PRT functions are called to (cooperatively) suspend the
target thread, read the state of its topmost managed frame, then repeatedly step to the
next older frame until no frames remain. At each frame, other functions can access that
frame’s instruction pointer, callee-saved registers, and GC roots. An additional function
enumerates any roots that may be present in the thread’s VSEs.

Stack walking is complicated by the need to unwind the stack in the presence of inter-
leaved managed and unmanaged frames. The PRT does not presume to understand the
layout of unmanaged stack frames, which may vary from compiler to compiler. Instead,
it uses the VSE mechanism to mark contiguous regions of the stack corresponding to
unmanaged code, and skips over the entire region during unwinding.

5.2 Composable Cuts

The PRT provides the implementation of composable cuts. These operate much like
simple cuts but execute any destructor or cleanup operations of intervening VSEs.

Each thread contains a virtual stack of VSEs, in which the thread explicitly maintains
a pointer to the virtual stack top, and each VSE contains a link to the next VSE on the
stack. The continuation data structure also contains a slot for the virtual stack top. The

2 Note, however, that a couple of optimization phases have not yet been made Pillar-safe, and
are currently disabled.

150 T. Anderson et al.

PRT provides interfaces to push and pop VSEs. When a continuation is created, the
current virtual stack top is stored in the continuation. Later, if a cut is made to this
continuation, the PRT compares the current virtual stack top against the value saved
in the target continuation. If these are the same, the PRT cuts directly to the target
continuation. If they differ, one or more intervening frames require cleanup, and the
PRT instead cuts directly to the destructor of the topmost VSE on the virtual stack,
passing the original target continuation as an argument. When each VSE destructor is
executed, it does its cleanup, removes itself from the virtual stack, then does another
cut to the original target continuation passed to the destructor. This sequence continues
until the target continuation is reached.

5.3 Prscalls

The Pillar compiler translates a prscall into a call to the PRT’s prscall interface
function. This function pushes a prscall VSE onto the virtual stack, copies arguments,
and calls the prscall’s child. Thus the child immediately starts executing sequentially.
Later, an idle thread looking for work may steal the remainder of the parent’s execution
(unfortunately also called the parent’s “continuation”) by setting a continuation-stolen
flag and restarting the parent. When the child terminates, it checks the continuation-
stolen flag to determine whether to return to the parent or to simply exit because the
continuation was stolen.

Our prscall design has interesting implications for stack management. When a
prscall continuation is stolen, the stack becomes split between the parent and child
threads, with the parent and child each owning one contiguous half. Since a stack
can contain an arbitrary number of active prscalls, each of which can be stolen,
a stack can become subdivided arbitrarily finely, leaving threads with tiny stacks that
will quickly overflow. To deal with this, the Pillar runtime allows a thread to allocate a
new “extension” stack (or “stacklet”) to hold newer stack frames.

The PRT provides a stack extension wrapper that allocates a new stack (with an
initial reference count of one), calls the target function, and deallocates the stack when
the function returns. The stack extension wrapper also pushes a VSE whose destructor
ensures that the stack will be properly deallocated in the event of a cut operation. To
support stack sharing, each full stack contains a reference count word indicating how
many threads are using a portion of the stack.

Logically, each prscall results in a new thread, regardless of whether the child
runs sequentially or in parallel with its parent. When managing locks, those threads
should have distinct and persistent thread identifiers, to prevent problems with the same
logical thread acquiring a lock in the parent under one thread ID and releasing it under a
different ID (the same is true for pcall and fcall). Each thread’s persistent logical
ID is stored in thread-local storage, and locking data structures must be modified to
use the logical thread ID instead of a low-level thread ID. This logical thread ID is
constructed simply as the address of a part of the thread’s most recent pcall or prscall
VSE. As such, the IDs are unique across all logical threads, and persistent over the
lifetimes of the logical threads.

Pillar: A Parallel Implementation Language 151

5.4 Fcalls

The Pillar compiler translates an fcall into a call to the PRT’s future creation func-
tion. This function creates a future consisting of a status field (empty/busy/full) and a
“thunk” that contains the future’s arguments and function pointer, and adds the future
to the current processor’s future queue. Subsequently, if a call to ftouch or fwait is
made and the future’s status is empty, it is immediately executed in the current thread.

At startup, the PRT creates one future pool thread for each logical processor and pins
each thread to the corresponding processor. Moreover, the PRT creates a future queue
for each future pool thread. A future pool thread tries to run futures from its own queue,
but if the queue is empty, it will try to steal futures from other queues to balance system
load.

Once the future has been evaluated, the future’s thunk portion is no longer needed. To
reclaim these, the PRT represents futures using a thunk structure and a separate status
structure. These point to each other until the thunk is evaluated, after which the thunk
memory is released. The memory for the status structure is under the control of the
Pillar program, which may allocate the status structure in places such as the stack, the
malloc heap, or the GC heap. We use this two-part structure so that the key part of the
future structure may be automatically managed by the GC while minimizing the PRT’s
knowledge of the existence or implementation of the GC.

6 Experience Using Pillar

This section describes our experience using Pillar to implement three programming
languages having a range of different characteristics. These languages are Java, IBM’s
X10, and an implicitly-parallel functional language.

6.1 Compiling Java to Pillar

As part of our initial efforts, we attempted to validate the overall Pillar design through
a simple Java-to-Pillar converter (JPC), leveraging our existing Java execution environ-
ment, the Open Runtime Platform (ORP) [11]. Given a trace of the Java classes and
methods encountered during the execution of a program, the JPC generates Pillar code
for each method from its bytecodes in the method’s Java class file.

The resulting code exercises many Pillar features. First, Java variables of reference
types are declared using the ref primitive type. Second, spans are used to map Pil-
lar functions to Java method identifiers, primarily for the purpose of generating stack
traces. They are also used, in conjunction with the also unwinds to annotation,
to represent exception regions and handlers. Third, when an exception is thrown, ORP
uses Pillar runtime functions to walk the stack and find a suitable handler, in the form
of an also unwinds to continuation. When the continuation is found, ORP sim-
ply invokes a cut to operation. Fourth, VSEs are used for synchronized methods.
Java semantics require that when an exception is thrown past a synchronized method,
the lock is released before the exception handler begins. A synchronized method is
wrapped inside a VSE whose cleanup releases the lock. Fifth, Java threads are started

152 T. Anderson et al.

via the pcall construct. Sixth, Pillar’s managed/unmanaged transitions are used for
implementing JNI calls and other calls into the ORP virtual machine.

Although several Pillar features were not exercised by the JPC, it was still effective
in designing and debugging the Pillar software stack, particularly the Pillar compiler
that was subjected to hundreds of thousands of lines of JPC-generated code.

6.2 Compiling X10 to Pillar

X10 is a new object-oriented parallel language designed for high-performance comput-
ing being developed by IBM as part of the DARPA HPCS program [12]. It is similar to
Java but with changes and extensions for high-performance parallel programming. It in-
cludes asynchronous threads, multidimensional arrays, transactional memory, futures,
a notion of locality (places), and distribution of large data sets.

We selected X10 because it contains a number of parallel constructs not in our other
efforts, such as places, data distributions, and clocks. We also want to experiment with
thread affinity, data placement, optimizing for locality, and scheduling. X10, unlike our
other languages, is a good language in which to do this experimentation.

We currently compile X10 by combining IBM’s open-source reference implementa-
tion of X10 [13] with the Java-to-Pillar converter. We are able to compile and execute a
number of small X10 programs, and this has substantially exercised Pillar beyond that
of the Java programs. In the future we will experiment with affinity and data placement.

6.3 Compiling a Concurrent Functional Language

Pillar is also being used as the target of a compiler for a new experimental functional
language. Functional languages perform computation in a largely side-effect-free fash-
ion, which means that a great deal of the computational work in a program can be
executed concurrently with minimal or no programmer intervention [14,15].

Previous work has compiled functional languages to languages such as C [16], Java
byte codes [17,18], and the Microsoft Common Language Runtime (CLR) [19]. These
attempts reported benefits such as interoperability, portability, and ease of compiler
development. However, they have also noted the mismatches between the functional
languages and the different target languages. The inability to control the object model
in Java and CLR, the lack of proper tail calls, the restrictions of type safety in Java and
CLR, and the inability to do precise garbage collection naturally in C, all substantially
complicate compiler development and hurt performance of the final code.
C-- and Pillar are designed to avoid these problems and provide an easy-to-target

platform for functional languages. Like the Java-to-Pillar converter, our experience with
the functional language showed Pillar to be an excellent target language. Pillar’s lack
of a fixed object model, its support for proper tail calls, and its root-set enumeration all
made implementing our functional language straightforward. Also, since Pillar is a set
of C extensions, we implement most of our lowest IR directly as C preprocessor macros,
and generating Pillar from this IR is straightforward. We can include C header files for
standard libraries and components (e.g., the garbage collector) coded in C, and Pillar
automatically interfaces the Pillar and C code. Pillar’s second-class continuations are
used to provide a specialized control-flow construct of the language. The stack walking-
based exceptions of Java and CLR would be too heavyweight for this purpose, and

Pillar: A Parallel Implementation Language 153

C’s setjmp/longjmp mechanism is difficult to use correctly and hinders performance.
Implementing accurate GC in the converter is as easy as in the Java-to-Pillar converter—
simply a matter of marking roots as refs and using the Pillar stack walking and root-set
enumeration support.

7 Related Work

The closest language effort to Pillar is C-- [4,5,6]. C-- is intended as a low-level
target language for compilers—it has often been described as a “portable assembler”.
Almost all Pillar features can be expressed in C--, but we designed Pillar to be slightly
higher level than C--. Pillar includes, for example, refs and threads instead of (as C--
would) just the mechanisms to implement them. We also designed Pillar as extensions
to C, rather than directly using C--, to leverage existing C compilers.

LLVM [20] is another strong and ongoing research effort whose goal is to provide
a flexible compiler infrastructure with a common compiler target language. LLVM’s
design is focused on supporting different compiler optimizations, while Pillar is aimed
at simplifying new language implementations, in part by integrating readily into an
existing highly-optimizing compiler. Comparing language features, the most important
differences between Pillar and LLVM are that LLVM lacks second-class continuations,
spans, pcalls, prscalls, and fcalls.

C# and CLI [21,22] are often used as intermediate languages for compiling high-
level languages, and early on we considered them as the basis for Pillar. However, they
lack second-class continuations, spans, prscalls, and fcalls. Furthermore, they are too
restrictive in that they impose a specific object model and type-safety rules.

Pillar uses ideas from or similar to other projects seeking to exploit fine-grained
parallelism without creating too many heavyweight threads. Pillar’s prscalls are taken
directly from Goldstein’s parallel-ready sequential calls [7], which were designed to
reduce the cost of creating threads yet make effective use of processors that become
idle during execution. Also, like Cilk [23] and Lea’s Java fork/join framework [24],
Pillar uses work stealing to make the most use of available hardware resources and
to balance system load. Furthermore, during prscall continuation stealing, Pillar tries
to steal the earlier (deeper) continuations as Cilk does, since seizing large amounts of
work tends to reduce later stealing costs. Pillar’s future implementation differs from the
lazy futures of Zhang et al. [25], which are implemented using a lazy-thread creation
scheme similar to Pillar’s prscalls. Since Pillar supports both prscalls and a separate
future pool-based implementation, it will be interesting to compare the performance of
both schemes for implementing futures.

8 Summary

We have described the design of the Pillar software infrastructure, consisting of the
Pillar language, the Pillar compiler, and the Pillar runtime, as well as the high-level
converter that translates programs from a high-level parallel language into Pillar. By
defining the Pillar language as a small set of extensions to the C language, we were able

154 T. Anderson et al.

to create an optimizing Pillar compiler by modifying only 1–2% of an existing optimiz-
ing C compiler. Pillar’s thread-creation constructs, designed for a high-level converter
that can find a great deal of concurrency opportunities, are optimized for sequential ex-
ecution to minimize thread creation and destruction costs. Pillar’s sequential constructs,
many of which are taken from C--, have proven to be a good target for languages with
modern features, such as Java and functional languages.

Our future work includes adding support for nested data parallel operations [9] to
efficiently allow parallel operations over collections of data. In addition, although we
currently assume a shared global address space, we plan to investigate Pillar support for
distributed address spaces and message passing.

We are still in the early stages of using Pillar, but our experience to date is positive—
it has simplified our implementation of high-level parallel languages, and we expect it
to significantly aid experimentation with new parallel language features and implemen-
tation techniques.

Acknowledgements

We have engaged in many hours of discussions with Norman Ramsey and John Dias of
Harvard University, and Simon Peyton Jones of Microsoft Research, on issues regarding
Pillar and C--. These discussions have been instrumental in focusing the design of
Pillar. We also thank the reviewers for their feedback on this paper.

References

1. GNU: The GNU Compiler Collection, http://gcc.gnu.org/
2. Open64: The Open Research Compiler, http://www.open64.net/
3. Saha, B., Adl-Tabatabai, A., Ghuloum, A., Rajagopalan, M., Hudson, R., Petersen, L.,

Menon, V., Murphy, B., Shpeisman, T., Sprangle, E., Rohillah, A., Carmean, D., Fang, J.: En-
abling Scalability and Performance in a Large Scale CMP Environment. In: EuroSys (March
2007)

4. Peyton Jones, S., Nordin, T., Oliva, D.: C–: A portable assembly language. In: Implementing
Functional Languages 1997 (1997)

5. Peyton Jones, S., Ramsey, N.: A single intermediate language that supports multiple imple-
mentations of exceptions. In: Proceedings of the SIGPLAN 2000 Conference on Program-
ming Language Design and Implementation (June 2000)

6. Ramsey, N., Peyton Jones, S., Lindig, C.: The C– language specification, version 2.0 (Febru-
ary 2005), http://cminusminus.org/papers.html

7. Goldstein, S.C., Schauser, K.E., Culler, D.E.: Lazy threads: implementing a fast parallel call.
Journal of Parallel and Distributed Computing 37(1), 5–20 (1996)

8. Rajagopalan, M., Lewis, B.T., Anderson, T.A.: Thread Scheduling for Multi-Core Platforms.
In: HotOS 2007: Proceedings of the Eleventh Workshop on Hot Topics in Operating Systems
(May 2007)

9. Ghuloum, A., Sprangle, E., Fang, J.: Flexible Parallel Programming for Tera-scale
Architectures with Ct (2007), http://www.intel.com/research/platform/
terascale/TeraScale whitepaper.pdf

http://gcc.gnu.org/
http://www.open64.net/
http://cminusminus.org/papers.html
http://www.intel.com/research/platform/terascale/TeraScale_whitepaper.pdf
http://www.intel.com/research/platform/terascale/TeraScale_whitepaper.pdf

Pillar: A Parallel Implementation Language 155

10. Saha, B., Adl-Tabatabai, A.R., Hudson, R.L., Minh, C.C., Hertzberg, B.: McRT-STM: a
high performance software transactional memory system for a multi-core runtime. In: PPoPP
2006: Proceedings of the eleventh ACM SIGPLAN symposium on Principles and practice of
parallel programming, pp. 187–197. ACM Press, New York (2006)

11. Cierniak, M., Eng, M., Glew, N., Lewis, B., Stichnoth, J.: Open Runtime Platform: A Flexible
High-Performance Managed Runtime Environment. Intel Technology Journal 7(1) (February
2003), http://www.intel.com/technology/itj/archive/2003.htm

12. Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A., Ebcioglu, K., von Praun,
C., Sarkar, V.: X10: An Object-Oriented Approach to Non-Uniform Cluster Computing. In:
OOPSLA 2005: Proceedings of the 20th Annual ACM SIGPLAN Conference on Object
Oriented Programming, Systems, Languages, and Applications, pp. 519–538. ACM Press,
New York (2005)

13. IBM: The Experimental Concurrent Programming Language X10. SourceForge (2007),
http://x10.sourceforge.net/x10home.shtml

14. Harris, T., Marlow, S., Peyton Jones, S.: Haskell on a shared-memory multiprocessor. In:
Haskell 2005: Proceedings of the 2005 ACM SIGPLAN workshop on Haskell, pp. 49–61.
ACM Press, New York (2005)

15. Hicks, J., Chiou, D., Ang, B.S.: Arvind: Performance studies of Id on the Monsoon Dataflow
System. Journal of Parallel and Distributed Computing 18(3), 273–300 (1993)

16. Tarditi, D., Lee, P., Acharya, A.: No assembly required: compiling standard ML to C. ACM
Letters on Programming Languages and Systems 1(2), 161–177 (1992)

17. Benton, N., Kennedy, A., Russell, G.: Compiling standard ML to Java bytecodes. In: ICFP
1998: Proceedings of the third ACM SIGPLAN international conference on Functional pro-
gramming, pp. 129–140. ACM Press, New York (1998)

18. Serpette, B.P., Serrano, M.: Compiling Scheme to JVM bytecode: a performance study. In:
ICFP 2002: Proceedings of the seventh ACM SIGPLAN international conference on Func-
tional programming, pp. 259–270. ACM Press, New York (2002)

19. Benton, N., Kennedy, A., Russo, C.V.: Adventures in interoperability: the sml.net experi-
ence. In: PPDP 2004: Proceedings of the 6th ACM SIGPLAN international conference on
Principles and practice of declarative programming, pp. 215–226. ACM Press, New York
(2004)

20. Lattner, C., Adve, V.: LLVM: A Compilation Framework for Lifelong Program Analysis &
Transformation. In: Proceedings of the 2004 International Symposium on Code Generation
and Optimization (CGO 2004), Palo Alto, California (March 2004)

21. ECMA: Common Language Infrastructure. ECMA (2002), http://www.ecma-
international.org/publications/Standards/ecma-335.htm

22. ISO: ISO/IEC 23270 (C#). ISO/IEC standard (2003)
23. Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H., Zhou, Y.: Cilk:

An Efficient Multithreaded Runtime System. Journal of Parallel and Distributed Comput-
ing 37(1), 55–69 (1996)

24. Lea, D.: A Java Fork/Join Framework. In: Proceedings of the ACM 2000 Java Grande Con-
ference, pp. 36–43. ACM Press, New York (2000)

25. Zhang, L., Krintz, C., Soman, S.: Efficient Support of Fine-grained Futures in Java. In: PDCS
2006: IASTED International Conference on Parallel and Distributed Computing and Systems
(November 2006)

http://www.intel.com/technology/itj/archive/2003.htm
http://x10.sourceforge.net/x10home.shtml
http://www.ecma-international.org/publications/Standards/ecma-335.htm
http://www.ecma-international.org/publications/Standards/ecma-335.htm

Associative Parallel Containers in STAPL�

Gabriel Tanase, Chidambareswaran Raman, Mauro Bianco, Nancy M. Amato,
and Lawrence Rauchwerger

Parasol Lab, Dept. of Computer Science, Texas A&M University
{gabrielt,chids,bmm,amato,rwerger}@cs.tamu.edu

Abstract. The Standard Template Adaptive Parallel Library (stapl)
is a parallel programming framework that extends C++ and stl with
support for parallelism. stapl provides a collection of parallel data
structures (pContainers) and algorithms (pAlgorithms) and a generic
methodology for extending them to provide customized functionality.
stapl pContainers are thread-safe, concurrent objects, i.e., shared ob-
jects that provide parallel methods that can be invoked concurrently.
They also provide appropriate interfaces that can be used by generic
pAlgorithms. In this work, we present the design and implementation of
the stapl associative pContainers: pMap, pSet, pMultiMap, pMultiSet,
pHashMap, and pHashSet. These containers provide optimal insert, search,
and delete operations for a distributed collection of elements based on
keys. Their methods include counterparts of the methods provided by the
stl associative containers, and also some asynchronous (non-blocking)
variants that can provide improved performance in parallel. We evaluate
the performance of the stapl associative pContainers on an IBM Power5
cluster, an IBM Power3 cluster, and on a linux-based Opteron clus-
ter, and show that the new pContainer asynchronous methods, generic
pAlgorithms (e.g., pfind) and a sort application based on associative
pContainers, all provide good scalability on more than 103 processors.

1 Introduction

Parallel programming is becoming mainstream due to the increased availability
of multiprocessor and multicore architectures and the need to solve larger and
more complex problems. To help programmers address the difficulties of paral-
lel programming, we are developing the Standard Template Adaptive Parallel
Library (stapl) [1,21,23]. stapl is a parallel C++ library with functionality
similar to stl, the ANSI adopted C++ Standard Template Library [18]. stl

is a collection of basic algorithms, containers and iterators that can be used
as high-level building blocks for sequential applications. Similar to stl, stapl

provides a collection of parallel algorithms (pAlgorithms), parallel containers
(pContainers), and views to abstract the data access in pContainers. These
are the building blocks for writing parallel programs. An important goal of stapl

� This work supported in part by NSF (EIA-0103742, ACR-0081510, ACR-0113971,
CCR-0113974, EIA-9810937, ACI-0326350, CRI-0551685), the DOE and HP.

V. Adve, M.J. Garzarán, and P. Petersen (Eds.): LCPC 2007, LNCS 5234, pp. 156–171, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Associative Parallel Containers in STAPL 157

is to provide a high productivity development environment for applications that
can execute efficiently on a wide spectrum of parallel and distributed systems.

Contribution. In this work, we present the stapl associative pContainers,
a set of data structures intended to be used as parallel counterparts of the stl

associative containers. The stapl associative pContainers provide interfaces
for the efficient storage and retrieval of their distributed data based on keys.
The stapl associative pContainers are thread-safe, concurrent objects, i.e.,
shared objects that provide parallel methods that can be invoked concurrently.
They also provide appropriate interfaces (views) that can be used to access
their distributed elements efficiently in parallel by generic pAlgorithms. The
methods of the stapl associative containers include counterparts of the methods
provided by the stl associative containers, insert, erase, and find, and also
some asynchronous (non-blocking) variants, insert async and erase async,
that can provide improved performance in parallel.

We present the design and implementation of the stapl associative
pContainers: pMap, pSet, pMultiMap, pMultiSet, pHashMap, and pHashSet. We
provide a unified framework for constructing thread-safe, distributed and shared
stapl associative pContainers from their corresponding stl counterparts. Our
performance evaluation on an IBM Power5 cluster, a large IBM Power3 cluster
and on a linux-based Opteron cluster show that the new pContainer asyn-
chronous methods, insert async and erase async, generic pAlgorithms (e.g.,
pfind), and a sort application based on an associative pContainer provide good
scalability and low overhead relative to their sequential counterparts.

Outline. The rest of this document is structured as follows: we provide an
overview of related work in Section 2, give a high level description of the stapl

library in Section 3, introduce the stapl associative pContainers in Section 4,
and present experimental results in Section 5.

2 Related Work

There has been significant research in the field of parallel and concurrent data
structures. Much work has focused on providing efficient locking mechanisms
and methodologies for transforming existing sequential data structures into con-
current data structures [6,7,8,10,17]. Investigations of concurrent hash tables
[7,8,17] and search trees (the most common internal representation for maps and
sets) [15,16] explore efficient storage schemes, different lock implementations, and
different locking strategies (e.g., critical sections, non-blocking, wait-free [10]),
especially in the context of shared memory architectures. In contrast, stapl asso-
ciative pContainers are designed for use in both shared and distributed memory
environments, and we focus on developing an infrastructure that will efficiently
provide a shared memory abstraction for pContainers (called a shared object
view in stapl) by automating aspects relating to the data distribution and man-
agement. We use a compositional approach where data structures (sequential or
concurrent) can be used as building blocks for implementing pContainers.

158 G. Tanase et al.

There are several parallel languages and libraries that have similar goals as
stapl[2,3,5,9,14,19]. While a large amount of effort has been put into making
array-based data structures suitable for parallel programming, associative data
structures have not received as much attention. The PSTL (Parallel Standard
Template Library) project [12,13] explored the same underlying philosophy as
stapl of extending the C++ STL for parallel programming. PSTL provided
distributed associative containers with support for specifying data distributions
and local and global iterators for data access. stapl differs from PSTL by pro-
viding an integrated framework for all associative pContainers, which also al-
lows users to customize the default behavior, such as specifying different data
distributions. PSTL is not an active project. Intel Threading Building Blocks
(TBB) [11] provide thread-safe containers such as vectors, queues and hashmaps
for shared memory architectures. The TBB concurrent hash map maps keys to
values and the interface provided resembles that of a typical stl associative con-
tainer, but with some modifications to support concurrent access. In stapl all
associative containers provide both stl compatible interfaces and additional in-
terfaces optimized for parallelism. While TBB was inspired by STAPL, our work
is distinguished from TBB in that we target both shared and distributed mem-
ory systems. Chapel is a new programming language developed by Cray that is
focused on reducing the complexity of parallel programming [4]. The language
proposes a formal approach for containers and data distributions, and provides
default data distributions and specifies a methodology for integrating new ones.
Also, although Chapel mentions associative domains, it does not appear to sup-
port multiple associative containers at this point. Finally, stapl differs from
Chapel and other parallel languages in that it is a library.

3 STAPL Overview

stapl consists of a set of components that include pContainers, pAlgorithms,
views, pRanges, and a runtime system (see Figure 1). pContainers, the dis-
tributed counterpart of stl containers, are thread-safe, concurrent objects, i.e.,
shared objects that provide parallel methods that can be invoked concurrently.
While all pContainers provide sequentially equivalent interfaces that are com-
patible with the corresponding stl methods, individual pContainers may in-
troduce additional methods to exploit the performance offered by parallelism
and by the runtime system. pContainers have a data distribution manager that
provides the programmer with a shared object view that presents a uniform ac-
cess interface regardless of the physical location of the data. Thread-safety is
guaranteed by providing mechanisms that guarantee all operations leave the
pContainer in a consistent state. Important aspects of all stapl components
are extendability and composability, e.g., the pContainers implemented within
the framework allow users to extend and specialize them for performance, and
to use pContainers of pContainers. Specialization is one avenue to improve
performance in stapl’s layered architecture.

Associative Parallel Containers in STAPL 159

User Application Code

pAlgorithms

pRange

Run-time System

Pthreads MPIOpenMP Native

A
da

pt
iv

e
F

ra
m

ew
or

k

Scheduler Executor Performance
Monitor

ARMI Communication
 Library

pContainers
Views

(a)

Associative
pContainer Base

Simple
Associative
pContainer

Pair
Associative
pContainer

Unique
Associative
pContainer

Multiple
Associative
pContainer

Sorted
Associative
pContainer

Hashed
Associative
pContainer

pMap pHashMap...

(b)

Fig. 1. (a) STAPL components, and (b) associative pContainer hierarchy

pContainer data can be accessed using views which can be seen as general-
izations of stl iterators that represent sets of data elements and are not related
to the data’s physical location. views provide iterators to access individual
pContainer elements . Generic parallel algorithms (pAlgorithms) are written
in terms of views, similar to how stl algorithms are written in terms of itera-
tors. The pRange is the stapl concept used to represent a parallel computation.
Intuitively, a pRange is a task graph, where each task consists of a work function
and a view representing the data on which the work function will be applied.
The pRange provides support for specifying data dependencies between tasks
that will be enforced during execution.

The runtime system (RTS) and its communication library ARMI (Adaptive
Remote Method Invocation [20]) provide the interface to the underlying oper-
ating system, native communication library and hardware architecture. ARMI

uses the remote method invocation (RMI) communication abstraction to hide
the lower level implementations (e.g., MPI, OpenMP, etc.). A remote method
invocation in stapl can be blocking (sync rmi) or non-blocking (async rmi).
When a sync rmi is invoked, the calling thread will block until the method ex-
ecutes remotely and returns its results. An async rmi doesn’t specify a return
type and the calling thread only initiates the method. The completion of the
method happens some time in the future and is handled internally by the RTS.
ARMI provides the rmi fence mechanism to ensure the completion of all pre-
vious RMI calls. The asynchronous calls can be aggregated by the RTS in an
internal buffer to minimize communication overhead. The buffer size and the ag-
gregation factor impact the performance, and in many cases should be adjusted
for the different computational phases of an application. For more details on
runtime performance tuning please consult [20,22].

4 Associative pContainers

An associative container provides optimized methods for storing and retrieving
data using keys. In stapl, similar to stl [18], we consider the following six basic

160 G. Tanase et al.

associative container concepts: simple, pair, sorted, hashed, unique and multiple.
Simple specifies that the container will store only keys while pair means that the
container will store pairs of keys and values. Sorted guarantees that the inter-
nal organization allows logarithmic time implementations for insert, delete and
find operations, while hashed containers guarantee asymptotic constant time for
these operations. In addition, traversing the data of a sorted associative container
from begin to end guarantees that the elements are traversed in sorted order.
Unique guarantees that all data elements have unique keys, while multi allows
for duplicate keys. Each of these concepts specifies properties and interfaces,
e.g., simple associative pContainer methods have keys in the interface (e.g.,
sets), while pair associative pContainers have methods with both keys and val-
ues (e.g., maps), hashed and sorted associative pContainers specify complexity
requirements, and single or multi specify the semantics of the operations.

Based on this taxonomy, stapl provides six associative pContainers that
are compositions of the basic concepts (see Figure 1(b)): pSet (simple, sorted,
unique), pMap (pair, sorted, unique), pMultiSet (simple, sorted, multiple),
pMultiMap (pair, sorted, multiple), pHashMap (pair, hashed, unique), and
pHashSet (simple, hashed, unique). The stapl associative pContainers pro-
vide the following generic specification (data types and methods):

– Data Types:
• key type: the type of the Key
• value type: the type of the Value (not available for simple)
• key compare: the type for key comparisons (not available for hashed)
• view type: the view type

– stl compatible methods:
• iterator insert(key[,value]): insert the (key,value) pair (no
value for simple associative). Return iterator pointing to inserted item.

• size t erase(key): erases all elements with key equal to k. Return
number of erased elements.

• iterator find(key): Return an iterator pointing to an element with
key equal to k or end() if no such element is found.

– New stapl methods:
• void insert async(key[,value]), void erase async(key): non-

blocking insert/erase (no value for simple associative).
• value find val(key): blocking operations returning values (instead of

iterators).

All stl equivalent methods require a return type, which in general translates
into a synchronous (blocking) method. For this reason, we provide a set of asyn-
chronous methods as part of the associative pContainer, e.g., insert async
and erase async. These non-blocking methods allow for better communica-
tion/computation overlap and enable the stapl RTS to aggregate messages to
reduce the communication overhead.

We also introduce new associative pContainer methods that return values
instead of iterators. These methods are provided because in stapl a remote call

Associative Parallel Containers in STAPL 161

will be issued when an iterator to a remote element is dereferenced. Hence, if a
programmer knows the value will be needed, they should use the method that
returns a value rather than the method that returns an iterator.

4.1 Associative pContainer Design and Implementation

The stapl pContainer framework aims to provide a set of base concepts and
a common methodology for the development of thread-safe, concurrent data
structures that are extendable and composable. The major concepts in the
pContainer framework that provide the support for the properties listed in the
previous section are the global identifier, domain, data distribution, partition,
partition mapping, pContainer component, view and pContainerBase. We define
the functionality of these modules in the context of associative pContainers, but
they are general and apply to other pContainers.

Global Identifier (GID): In the stapl pContainer framework, each element
is uniquely identified by its GID. This is an important requirement that allows
us to provide a shared object view. For a simple associative pContainer the GID
associated with each element is a key, whereas it is a (key, m) pair for a multi
associative pContainer, where m is an integer used to manage multiplicity.

Domain and Domain Instance: The pContainer domain is the universe
of possible GIDs that will identify its elements. The domain of the associative
pContainer is given by the range of possible keys the pContainer can hold.
For example for a pMap over strings the domain can be the set of all possible
strings or the set of all possible strings between two boundaries according to
some order relation (e.g. lexicographical order). At any instant, there is only
a finite set of elements in the container. The GIDs associated with these ele-
ments are referred to as the domain instance of the pContainer. For example
AssociativeDomain<string>(’a’,’k’) is a domain comprising all strings that
are greater than ’a’ and strictly smaller than ’k’ according to the lexicographi-
cal order. A domain instance corresponding to the previously defined associative
domain might be {’a’, ’aa’, ’abc’, ’joe’}. Domain instances are ordered
sets to allow their elements to be enumerated or scanned. The enumeration order
is specified by implementing two methods: GID get first gid() which returns
the first GID/index of the set and GID get next gid(GID) which returns the
GID that immediately follows the one provided as input to the method.

Data Distribution: The Data Distribution is responsible for determining the
location where an element associated with a GID is located. A location is a
component of a parallel machine that has a contiguous memory address space and
has associated execution capabilities (e.g., threads). A location can be identified
with a process address space. The data distribution manager uses (i) a partition
to decide for every key in the domain to which sub-domain it has been allocated,
and (ii) a partition-mapper to decide to which location each sub-domain has
been allocated.

162 G. Tanase et al.

template<class Domain>

class partition_strategy{

partition_strategy(...);

//compute the sub-domain

//to which the GID is associated

ComponentID map(GID);

}

typedef

associative_domain<string,

lexi_compare> Domain;

vector<Domain> doms;

doms.push_back(Domain(’a’..’d’);

doms.push_back(Domain(’d’..’z’);

partition_strategy(doms);

(a) Partition Strategy

1 value associative_pc_base::find(key){

2 Location loc;

3 dist_manager.lookup(key)

4 C_ID = part_strategy.map(key)

5 loc = part_mapper.map(C_ID)

6 if loc is local

7 return component(C_ID).find(key)

8 else

9 return sync_rmi (loc,find(key));

(b) Implementation of find() method

Fig. 2. Interfaces for associative pContainer concepts

Partition: The partition is a policy class used to specify how a domain is
decomposed into sub-domains. The main functionality provided by a partition
is a mapping from a GID to the sub-domain that contains it. Associative
pContainers are dynamic containers supporting concurrent additions and dele-
tions of elements, thus the corresponding partitioning strategies have to pro-
vide functionality to add or delete GIDs to/from the corresponding domain
instance or, e.g., to perform repartitions to ensure load balance. The default
partition strategy implemented by stapl sorted associative pContainers is a
static blocked partition over the key space. Users can provide additional parti-
tions for associative pContainers by explicitly enumerating the corresponding
sub-domains as illustrated in Figure 2(a). For a hashed associative pContainer,
the partition can be specified by providing a hash function that will map a key
to a sub-domain ID (e.g. hash(key)%num subdomains).

Partition Mapper: A partition is mapped onto a set of locations using a
partition-mapper, which maps a sub-domain identifier (from 0 to m − 1) to a
location (from 0 to L−1). There are two partition mappers currently available in
stapl: cyclic mapper, where sub-domains are distributed cyclically among lo-
cations, and blocked mapper, where m/L consecutive sub-domains are mapped
to a single location.

pContainer Components: The data corresponding to a sub-domain is stored
in components within the location where that sub-domain is mapped. The GIDs
associated with the stored elements of a component constitute a sub-domain
instance. There is no data replication. We have implemented the associative
pContainer components by extending the corresponding sequential container
(typically STL containers) with functionality needed to implement domain in-
stances.

Associative pContainer Views: views are defined as the accessors for the
data elements stored in the pContainer. pAlgorithms in stapl are written in
terms of views, similar to how stl algorithms are written in terms of iterators.
A view is defined by an ordered domain of GIDs which is a subset of the domain

Associative Parallel Containers in STAPL 163

instance of the pContainer. For all the GIDs of the domain a view provides
corresponding iterators that can be used to access the data elements. A view has
associated a partition and a partition-mapper to allow parallel processing of
the data. The default view provided by a pContainer matches the partition and
the mapping of the pContainer data because this view provides the most efficient
data access since all the elements in a sub-view are in the same physical location.
The views over pMap, pMultiMap, and pHashMap support mutable iterators over
data. This allows the value field to be modified. The others (pSet, pMultiSet,
and pHashSet) provide read only views with const iterators.

Associative pContainer Base Class: To automate and standardize the pro-
cess of developing associative pContainers, we designed a common base that
is responsible for maintaining the data, the distribution manager, and a default
view. The associative pContainer base is generic and uses template parame-
ters and Traits classes to tailor the data structure to the user’s needs. Each
basic associative concept (simple, pair, unique, multi, sorted, hashed) is im-
plemented as a class derived from the associative pContainer base to provide
the specified functionality and enforce the required properties. Each associative
pContainer (e.g., pMap), inherits from three corresponding classes as depicted
in Figure 1(b).

A typical implementation of a pContainer method is included in Figure 2(b)
to illustrate how the pContainermodules interact. The runtime cost of the meth-
ods in the associative pContainer interface has three constituents: the time to
decide the location and the component where the element is stored, the com-
munication time to get/send the required information, and the time to perform
the operation on a component. The time to find the location and the compo-
nent depends on the partition used. For sorted associative pContainers (pSet,
pMap, pMultiSet, and pMultiMap), an optimal search is logarithmic in the num-
ber of sub-domains of the partition, while for hashed associative pContainers
(pHashSet and pHashMap) it is amortized constant time. The search for location
and component IDs is illustrated in Figure 2(b), lines 3-5. The communication
time affects only the operations that are executed remotely (Figure 2(d), line 9).
For asynchronous operations, this is the time to initiate the RMI call, while for
methods that return values it is the time to send the request and to receive the
results. The time for performing the operation on the component is logarithmic
or amortized constant time for sorted and hashed pContainers, respectively
(Figure 2(b), line 7). The memory overhead depends on the partition used. A
blocked partition for a sorted pContainer requires space proportional to the
number of sub-domains, while for a hashed partition the overhead is constant
in each location. Different partitions, with more complex invariants, may incur
different computational and memory overheads.

5 Performance Evaluation

In this section, we evaluate the scalability of the parallel methods described in
Section 4, we evaluate three generic pAlgorithms, pfind, paccumulate, and

164 G. Tanase et al.

pcount, and we consider a simple sorting algorithm as an example of an appli-
cation based on a stapl associative pContainer.

5.1 Architectures Used

We evaluated the associative pContainer performance on three architectures.
The first system, referred to as P5-cluster, is an IBM HPC cluster consisting
of 122 p5-575 nodes, each node with 8 Power5 chips (1.9GHz, 64-bit PowerPC
architecture) and 32GB of memory per node. The second system, referred to as
P3-cluster, is a 6,656 processor IBM RS/6000 SP system that consists of 416
SMP nodes, each with 16 Power3+ CPUs and where processors on each node
have a shared memory pool of between 16 and 64 GB. The third system, referred
to as opteron-cluster, is a 712-CPU Opteron (2.2 GHz) cluster running the
Linux operating system. Processors are organized two on a node with 6GB of
memory per node. The nodes are interconnected with a high-speed InfiniBand
network. We have used GNU GCC v4 on P5-cluster and opteron-cluster

and GCC 3.4 on P3-cluster, and the O3 optimization level. All systems are
operated by NERSC at Lawrence Berkeley National Laboratory.

5.2 Evaluation of the Associative pContainer Methods

Methodology: We recall from Section 4 that a stapl associative parallel con-
tainer provides a set of methods to insert, find and erase elements. We discuss
next the performance of the methods and the factors influencing the running
time. To evaluate the scalability of individual methods we designed the kernel
shown in Figure 3. The figure shows insert async, but the same kernel is used
to evaluate all methods. For a given number of elements N, all P available pro-
cessors concurrently insert N/P elements. The elements are generated randomly
so the resulting data distribution is approximately balanced across the machine.
We report the time taken to insert all N elements globally. The measured time
includes the cost of an rmi fence call which is more than a simple barrier. An
rmi fence guarantees that all remote method calls in flight are finished when

1 evaluate_performance(N,P){

2 - generate N/P elements in a local vector local_data

3 rmi_fence(); //Barrier

4 tm = stapl::start_timer(); //start timer

5 for(it=local_data.begin(); it != local_data.end(); ++it) {

6 pmap_test.insert_async(*it); //insert N/P elements concurently

7 }

8 rmi_fence(); //ensure all insert are finished

9 elapsed = stapl::stop_timer(tm); //stop the timer

10 - Reduce elapsed times, getting the max time from all processors.

11 - Report the max time

12 //repeat lines 2-11 for the rest of the methods

Fig. 3. Kernel used to evaluate the performance of individual methods provided by
associative containers

Associative Parallel Containers in STAPL 165

 0

 50

 100

 150

 200

 250

 300

 1 2 4 8 16 32 64 128

E
xe

cu
tio

n
T

im
es

(s
ec

)

Num Procs

insert async
erase async

find

(a) pMap execution times

 0

 20

 40

 60

 80

 100

 120

 140

 1 16 32 64 128

S
ca

la
bi

lit
y

Num Procs

linear
insert async
erase async

find

(b) pMap scalability

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 1 2 4 8 16 32 64 128

E
xe

cu
tio

n
T

im
es

(s
ec

)

Num Procs

insert async
erase async

find

(c) pHashMap execution times

 0

 20

 40

 60

 80

 100

 120

 140

 1 16 32 64 128

S
ca

la
bi

lit
y

Num Procs

linear
insert async
erase async

find

(d) pHashMap scalability

Fig. 4. P5-cluster: Execution times and scalability for (a-b) pMap and (c-d) pHashMap
methods with 50 million elements. Results are shown for insert async, erase async,
and find; the performance of insert and erase is indistinguishable from find.

the method returns. Unless specified, all experiments have been conducted using
integer keys. All associative pContainers were evaluated but due to the simi-
larity of the behavior observed and space limitations, we include in this section
results only for pMap and pHashMap.

Strong Scaling: In this section we analyze the scalability of the methods using
the kernel described in Figure 3. We define scalability as the ratio between the
time taken to complete the kernel when using one processor and the time taken
when using P processors.

For the strong scaling experiment, the number of elements, N and the num-
ber of processors, are chosen differently depending on the architecture. On
P5-cluster we used N = 50 million elements and the number of proces-
sors is varied from 1 to 128. Figure 4 shows the execution times and scal-
ability observed for the pMap and pHashMap methods; since the performance
of the synchronous methods (find, insert, and erase) was indistinguish-
able from each other, only find is shown to simplify the figure. Although
the times decrease when increasing the number of processors, the synchronous

166 G. Tanase et al.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 128 256 512 1024

S
ca

la
bi

lit
y

Num Procs

linear
insert async
erase async

find

(a) pMap

 1

 2

 3

 4

 5

 6

 7

 8

 128 256 512 1024

S
ca

la
bi

lit
y

Num Procs

linear
insert async
erase async

find

(b) pHashMap

Fig. 5. P3-cluster: Scalability for (a) pMap and (b) pHashMap methods with 400 mil-
lion elements. Results are shown for insert async, erase async, and find; the per-
formance of insert and erase is indistinguishable from find.

methods, insert, erase, and find, show poor scalability. Due to their block-
ing nature, these methods cannot employ aggregation of messages or over-
lap communication and computation. In contrast, the asynchronous methods,
insert async and erase async, exhibit good scalability for both pMap and
pHashMap, benefiting from the aggregation and communication/computation
overlap support provided by ARMI. Accessing an element in a pMap compo-
nent requires a number of memory accesses that is logarithmic in the size of
the component, while in a pHashMap the number of memory accesses is es-
sentially independent of the size of the component. Hence, since the size of
the components decreases as the number of processors increases, the strong
scalability of the pMap methods should be higher than for the pHashMap
methods. The time for synchronous methods increases from 1 to 2 proces-
sors because of the communication overhead, and then shows a steady de-
cline. This is more evident for pHashMap than for pMap since the lower ac-
cess time for the former makes the communication overhead relatively more
significant.

We also evaluated the performance of the pContainer methods on P3-

cluster which allows us to study a large number of processors and larger input
sizes. In Figure 5 we show results where the pMap and pHashMap methods are ex-
ecuted using 400 million elements and the number of processors varies from 128
to 1024; since the performance of the synchronous methods (find, insert, and
erase) was indistinguishable from each other, only find is shown to simplify
the figure. The scalability of the pMap asynchronous methods is super-linear,
while the pHashMap scalability is sub-linear. The super-linear scalability for the
pMap is due to the faster access time for a pMap component as its size decreases,
i.e., as the number of processors increases. All synchronous methods show better
scalability than on P5-cluster (Figure 4) because the reference point is 128
processors and not 1.

Associative Parallel Containers in STAPL 167

 0

 5

 10

 15

 20

 25

 30

 35

 1 8 16 32 64 128

E
xe

cu
tio

n
T

im
es

(s
ec

)

Num Procs

insert async
erase async

find

(a) P5-cluster

 0

 10

 20

 30

 40

 50

 60

 1 8 16 32 64 128

E
xe

cu
tio

n
T

im
es

(s
ec

)

Num Procs

insert async
erase async

find

(b) opteron-cluster

Fig. 6. Execution Times for weak scaling analysis with 1 million elements per proces-
sor. Results are shown for insert async, erase async, and find; the performance of
insert and erase is indistinguishable from find.

Weak Scaling: In this experiment, we modify the input arguments to the test
kernel so that each processor concurrently inserts N elements, leading to a total
of N ×P operations. We expect the running time to show a slight increase as we
increase the number of processors due to the increase in communication over-
head. Results for P5-cluster and opteron-cluster are shown in Figure 6;
since the performance of the synchronous methods (find, insert, and erase)
was indistinguishable from each other, only find is shown to simplify the fig-
ure. We notice an increase in the runtime when going from one (no remote
communication) to two processors and the times for the asynchronous methods
increase slightly, both as expected. On the opteron-cluster the communica-
tion is more expensive and the overall running time increases at a faster rate.
The synchronous operations do not scale well for small numbers of processors,
but improve when the number of processors increases beyond 32. When using
more processors, even though the calling thread may be blocked waiting for re-
turn values, requests from other threads are served thus improving the rate at
which methods are executed by the system.

5.3 Support for Generic Parallel Algorithms

Generic parallel algorithms in stapl are written in terms of views. Associa-
tive pContainers provide views that can be used to access the data and we
study here the performance of generic non-mutating pAlgorithms such as pfind
pcount, and paccumulate when applied to data in an associative pContainer.
The paccumulate algorithm accumulates in parallel the data in each component
followed by a reduction to compute the final result. The pcount algorithm is sim-
ilar but counts the number of data elements that satisfies a given predicate. The
pfind algorithm finds the iterator corresponding to an input key. Each processor
performs a linear search through all elements in its local pContainer components
and a reduction is performed at the end to return the iterator corresponding to

168 G. Tanase et al.

 0

 50

 100

 150

 200

 250

 300

 1 16 32 64 128

S
ca

la
bi

lit
y

Num Procs

linear
p find

p accumulate
p count if

(a) pMultiSet (P5-cluster, 50M)

 0

 50

 100

 150

 200

 250

 1 16 32 64 128

S
ca

la
bi

lit
y

Num Procs

linear
p find

p accumulate
p count if

(b) pHashSet (P5-cluster, 50M)

 1

 2

 3

 4

 5

 6

 7

 8

 9

 128 256 512 1024

S
ca

la
bi

lit
y

Num Procs

linear
p find

p accumulate
p count if

(c) pMultiSet (P3-cluster, 400M)

 1

 2

 3

 4

 5

 6

 7

 8

 128 256 512 1024

S
ca

la
bi

lit
y

Num Procs

linear
p find

p accumulate
p count if

(d) pHashSet (P3-cluster, 400M)

Fig. 7. Scalability of generic p find(), p count(), and p accumulate() pAlgorithms
on pMultiSet and pHashSet for two architectures and data sizes: (a,b) P5-cluster

for 50 million elements, (c,d) P3-cluster for 400 million elements

the first occurrence of the element. We include in Figure 7(a)(b) the scalability of
the pAlgorithms on P5-cluster using pMultiSet and pHashSet containers. In
Figure 7(c)(d) we show corresponding results on the P3-cluster when using a
larger number of processors. The times reported for pfind are for the worst case
scenario when the element searched for is not in the pContainer so the entire
data space will be scanned. We observe that the algorithms exhibit super-linear
speedup. The super-linear speedup is due to the the sequential (STL) containers
used in the pContainer components. We performed the following experiment on
P5-cluster to verify that our super-linear speedup is justified. We measured
sequential std::acumulate on std::multiset and hash set containers with
N=50 million elements and N=50M/128=390625 elements. The running times
dropped 217 times for std::multiset and 134 times for hash set, while the
input size was only 128 times smaller.

5.4 Sorting Using Associative pContainers

In this section, we consider a sorting algorithm based on pMultiSet. The algo-
rithm inserts the elements of a view into a pMultiSet which stores the elements

Associative Parallel Containers in STAPL 169

p_sort_multiset(INPUT_VIEW view) {

pair<min, max> = p_min_max_element(view);

associative_ps = compute_partition_strategy (min, max, P);

stapl::p_multiset<INPUT_VIEW::data_type> pmultiset(ps);

- insert in parallel all elements of view into pmultiset;

- compute prefix sums and align the input view with the

distribution of the pmultiset

- copy in parallel from pmultiset back into the input view

- deallocate the p_multiset

}

Fig. 8. Parallel sort using parallel associative containers

in sorted order, followed by a copy of the elements back to the original view;
see pseudo-code in Figure 8. We evaluated the scalability of this pAlgorithm
on P5-cluster (N=50 million) and P3-cluster (N=400 million) for various
number of processors (strong scaling). The input view is defined over a pArray,
another pContainer in stapl[21]. In Figure 9 we see that the algorithm scales
fairly well. The sub-linear scalability observed for large number of processors is
due to the increased overall communication generated by the main steps of the
pAlgorithm (e.g., insert, prefix sums and copy back).

5.5 Overhead of Associative pContainers

One important aspect when introducing a parallel data structure is the run-time
overhead added over a corresponding sequential data structure. The run-time
overhead depends on the particular container, input sizes, data types, etc. In
Table 1 we compare the pMap methods and pAlgorithms on pMultiSet when
using one processor with the the corresponding sequential container methods
and algorithms. For the parallel stl algorithms the overhead is relative to the
sequential stl algorithms executed on the corresponding stl containers. For the
parallel sort the comparison is with an equivalent sequential algorithm that is
using an std::multiset to sort the elements. We made these measurements on
the opteron-cluster and the overheads vary between 1.25% and 12.25%. We
are working on improving these overheads.

 0

 20

 40

 60

 80

 100

 120

 140

 1 16 32 64 128

S
ca

la
bi

lit
y

Num Procs

linear
p sort

(a) P5-cluster

 1

 2

 3

 4

 5

 6

 7

 8

 128 256 512 1024

S
ca

la
bi

lit
y

Num Procs

linear
p sort

(b) P3-cluster

Fig. 9. Scalability for parallel sort using parallel associative containers

170 G. Tanase et al.

Table 1. Overhead for pMap methods and pAlgorithms using pMultiSet

pMap Methods pAlgorithms

insert erase find insert pfind paccumulate pcount sort
async async assoc

Overhead(%) 7.00 6.39 10.52 8.30 1.25 3.29 3.89 12.25

6 Conclusion

In this paper, we presented the stapl associative pContainers, a collection of
data structures optimized for fast storage and retrieval of data based on keys. We
described the design and implementation of these pContainers whose methods
include counterparts of the methods provided by the stl associative containers,
and also some asynchronous (non-blocking) variants that can provide improved
performance in parallel. Our experimental results on a variety of architectures
show that stapl associative pContainers provide good scalability and low over-
head relative to stl containers.

References

1. An, P., Jula, A., Rus, S., Saunders, S., Smith, T., Tanase, G., Thomas, N., Amato,
N., Rauchwerger, L.: STAPL: A standard template adaptive parallel C++ library.
In: Proc. of the International Workshop on Advanced Compiler Technology for
High Performance and Embedded Processors (IWACT), Bucharest, Romania (July
2001)

2. Blelloch, G.: Vector Models for Data-Parallel Computing. MIT Press, Cambridge
(1990)

3. Blelloch, G.: NESL: A Nested Data-Parallel Language. Technical Report CMU-
CS-93-129, Carnegie Mellon University (April 1993)

4. Callahan, D., Chamberlain, B.L., Zima, H.: The cascade high productivity lan-
guage. In: The Ninth International Workshop on High-Level Parallel Programming
Models and Supportive Environments, vol. 26, pp. 52–60 (April 2004)

5. Chan, A., Dehne, F.: CGMgraph/CGMlib: Implementing and testing CGM graph
algorithms on PC clusters (2003)

6. Dechev, D., Pirkelbauer, P., Stroustrup, B.: Lock-free dynamically resizable arrays.
In: Shvartsman, M.M.A.A. (ed.) OPODIS 2006. LNCS, vol. 4305, pp. 142–156.
Springer, Heidelberg (2006)

7. Gao, H., Groote, J., Hesselink, W.: Almost wait-free resizable hashtables. In: Paral-
lel and Distributed Processing Symposium, 2004. Proceedings. 18th International,
pp. 26–30 (April 2004)

8. Greenwald, M.: Two-handed emulation: How to build non-blocking implementa-
tions of complex data-structures using DCAS (2002)

9. Gregor, D., Lumsdaine, A.: Lifting sequential graph algorithms for distributed-
memory parallel computation. SIGPLAN Not. 40(10), 423–437 (2005)

10. Herlihy, M.: A methodology for implementing highly concurrent data structures. In:
PPOPP 1990: Proceedings of the second ACM SIGPLAN symposium on Principles
& practice of parallel programming, pp. 197–206. ACM Press, New York (1990)

Associative Parallel Containers in STAPL 171

11. Intel. Intel. Reference for Intel Threading Building Blocks, version 1.0 (April 2006)
12. Johnson, E.: Support for Parallel Generic Programming. PhD thesis, Indiana Uni-

versity (1998)
13. Johnson, E., Gannon, D.: HPC++: Experiments with the parallel standard library.

In: International Conference on Supercomputing (1997)
14. Kale, L.V., Krishnan, S.: Charm++: a portable concurrent object oriented system

based on c++. SIGPLAN Not. 28(10), 91–108 (1993)
15. Kung, H.T., Lehman, P.L.: Concurrent manipulation of binary search trees. ACM

Trans. Database Syst. 5(3), 354–382 (1980)
16. Lehman, P.L., Yao, S.B.: Efficient locking for concurrent operations on b-trees.

ACM Trans. Database Syst. 6(4), 650–670 (1981)
17. Michael, M.M.: High performance dynamic lock-free hash tables and list-based

sets. In: SPAA 2002: Proceedings of the fourteenth annual ACM symposium on
Parallel algorithms and architectures, pp. 73–82. ACM Press, New York (2002)

18. Musser, D., Derge, G., Saini, A.: STL Tutorial and Reference Guide, 2nd edn.
Addison-Wesley, Reading (2001)

19. Reynders, J.V.W., Hinker, P.J., Cummings, J.C., Atlas, S.R., Banerjee, S.,
Humphrey, W.F., Karmesin, S.R., Keahey, K., Srikant, M., Tholburn, M.D.:
POOMA: A Framework for Scientific Simulations of Paralllel Architectures. In:
Wilson, G.V., Lu, P. (eds.) Parallel Programming in C++, ch.14, pp. 547–588.
MIT Press, Cambridge (1996)

20. Saunders, S., Rauchwerger, L.: ARMI: An adaptive, platform independent com-
munication library. In: ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP), San Diego, CA (June 2003)

21. Tanase, G., Bianco, M., Amato, N.M., Rauchwerger, L.: The STAPL pArray. In:
Proceedings of the 8th MEDEA Workshop, Brasov, Romania, pp. 81–88 (2007)

22. Thomas, N., Saunders, S., Smith, T., Tanase, G., Rauchwerger, L.: ARMI: A high
level communication library for STAPL. Parallel Processing Letters 16(2), 261–280
(2006)

23. Thomas, N., Tanase, G., Tkachyshyn, O., Perdue, J., Amato, N.M., Rauchwerger,
L.: A framework for adaptive algorithm selection in STAPL. In: Proc. ACM SIG-
PLAN Symp. Prin. Prac. Par. Prog. (PPoPP), pp. 277–288 (2005)

Explicit Dependence Metadata in

an Active Visual Effects Library�

Jay L.T. Cornwall1, Paul H.J. Kelly1, Phil Parsonage2, and Bruno Nicoletti2

1 Imperial College London, UK
2 The Foundry, UK

Abstract. Developers need to be able to write code using high-level,
reusable black-box components. Also essential is confidence that code
can be mapped to an efficient implementation on the available hard-
ware, with robust high performance. In this paper we present a pro-
totype component library being developed to deliver this for industrial
visual effects applications. Components are based on abstract algorith-
mic skeletons that provide metadata characterizing data accesses and
dependence constraints. Metadata is combined at run-time to build a
polytope representation which supports aggressive inter-component loop
fusion. We present results for a wavelet-transform-based degraining filter
running on multicore PC hardware, demonstrating 3.4x–5.3x speed-ups,
improved parallel efficiency and a 30% reduction in memory consumption
without compromising the program structure.

1 Introduction

Component-based programming is a software development paradigm in which
interoperable and composable components are written, tested and debugged in
isolation of one another. They can then be composed into useful programs, per-
haps from a library of reusable components. This idea comes so naturally that it
has become the primary mode of user interaction in professional video composit-
ing applications, where the user composes effects and video clips into workflows.
Elegant design comes at a price, however, and the goals of component-based
programming are frequently at odds with performance.

In this paper we explore the barriers to high performance in an industrial
visual effect by building a dynamic, self-optimising library from its constituent
algorithms. At the heart of our library is the concept of dependence metadata,
which enables complex code transformations without expensive dependence anal-
yses. We focus on an effect called degraining [21], produced by our industrial
collaborators The Foundry, designed to suppress the random texturing noise in-
troduced by photographic film without compromising an image’s clarity. This is
achieved by first analysing the grain, or by matching it against a database of
grain patterns, and then applying a wavelet-based removal algorithm. The latter
is more computationally intensive and thus forms the focus of our work.
� This work was partly funded by the EPSRC (ref EP/E002412).

V. Adve, M.J. Garzarán, and P. Petersen (Eds.): LCPC 2007, LNCS 5234, pp. 172–186, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Explicit Dependence Metadata in an Active Visual Effects Library 173

input Vertical
DWT

highY

lowY

Horizontal
DWT

Horizontal
DWT

HH

LH

HL

LL

Proprietary

Proprietary

Proprietary

HHx

LHx

HLx

Sum pSum1
Sum pSum2

Fig. 1. One iteration of degraining in component form, replicated four times with an
appropriate terminator. Dark boxes represent components, while light boxes represent
data handles. Handles feed component outputs to other inputs without an intermediate
data set necessarily existing, unless the programmer explicitly evaluates the handle.

Figure 1 shows a breakdown of one iteration of the degraining algorithm into
components. The complete algorithm chains this graph four times in succession.
Our breakdown is faithful to the industrial codebase except that we split sum-
mation from the proprietary component, a small improvement in design that our
optimising framework allows us to afford. Note that this will artificially inflate
our performance gains somewhat, but we believe this to be the most desirable
construction; emphasised by the difficulties we encountered in debugging the
partially fused implementation. The original algorithm was written in a sim-
ilar component-based structure; partly to promote reusability and to simplify
debugging, and partly due to the difficulty of managing heavily fused code.

From a performance perspective, the optimum structure looks very different.
Some knowledge of the dependence structures for each component reveals great
redundancy in iteration over intermediate results. Each component is implic-
itly a whole new iteration. Large data sets carry information from one com-
ponent to the next, spilling into higher levels of the memory hierarchy, when
restructuring transformations could greatly reduce their size. Opportunities for
instruction-level parallelism (ILP), an important tool in superscalar architec-
tures, are limited by the barriers between the computations of each component.
Crucially, none of these optimisations could be applied directly to the code with-
out greatly disrupting the component-based design. This tension between good
design and high performance tends to lead programmers to choose one at the
expense of the other.

We argue that these optimisations are crucial for performance and that, with
some innovative programming, they can be consistent with good design. Our so-
lution avoids disruption in the original code by promoting a generative approach,
in which components are equipped with functionality to create their own imple-
mentations. Problem-specific kernel code is left to the programmer as before,
while we take control of the loops and collect high-level metadata describing
each component’s dependence structure. Delayed evaluation reveals component
compositions and runtime code generation allows us to produce context-sensitive
optimised implementations. The fundamental transformations leading to faster
code are made safe and precise by dependence metadata. These are used to build
a polytope representation of the loop nests from which optimised code can be
instantiated.

174 J.L.T. Cornwall et al.

In summary, the main contributions of this paper are:

– Dependence metadata as a tool for optimisation. In Section 2 we
discuss the role and collection of dependence metadata in a component en-
vironment through algorithmic skeletons. This information enables precise
loop shifting, loop fusion and array contraction without difficult analysis of
the implementation.

– Evaluation of an active visual effects library. In Section 3 we present a
complete active visual effects library built around a polytope code generation
framework. We evaluate its performance with a component-based industrial
visual effect.

2 System Design

An overview of our design is shown in Figure 2. We have chosen to adopt an offline
phase in which optimised code is compiled and linked to the client application.
This contrasts with other approaches that maintain client/library separation by
moving this phase to runtime. Our approach benefits from requiring no build
environment on the end-user system and from having no code generation or
compile-time overhead. We lose the ability to specialise to dynamic parameters
without pre-tracing every instance of them, but consider this to be a worthwhile
trade-off given the large interactive variability of those parameters in our target
applications. In practice, we only generate multiple traces when the component
graph changes with a parameter (e.g. by disabling or reordering operations).

2.1 Library Front-End

We have designed the front-end to our active library with transparency in mind.
The goal is to present an interface to the programmer which matches the existing
imperative execution model, while retaining the flexibility to switch to a delayed
evaluation mode. Our solution uses proxy functions to build a graph of compo-
nents connected by abstract data handles at runtime, as shown in Listing 1.1.
This code excerpt produces the graph for one iteration of degraining as shown
in Figure 1. Run in an imperative mode, the same program would invoke the
correct components in sequence and instantiate data handles with real data sets

Client Application

Active Library
(Trace Mode)

Component Graph and
Metadata Collector

Optimised Component
Aggregate Source Files

Step 1: Dynamic Tracing Step 2: Offline Rebuild

Optimised Client Application

Client Application Optimised Component
Aggregate Source Files Optimised Client Application

Active Library
(Invoke Mode)

Step 3: Aggregate Invocation

Fig. 2. Stages of the optimisation workflow. The client is run with the library in a trace
mode. Optimised aggregate library code is generated and embedded manually into the
client application. A second library mode invokes this aggregate code in normal usage.

Explicit Dependence Metadata in an Active Visual Effects Library 175

/∗ Real data s e t s for reading /writ ing data . ∗/
Handle input (new Image (width , he ight , components)) ;
Handle pSum2(new Image (width , he ight , components)) ;
Handle LL(new Image (width , he ight , components)) ;

/∗ Virtua l data s e t s for automatic i n s t an t i a t i on . ∗/
Handle highY , lowY ,HH,LH,HL,HHx,LHx,HLx, pSum1 ;

VertDWT(input , highY , lowY , f i l t e rHe i g h t , pass) ;
HorizDWT(highY ,HH,LH, f i l t e rWid th , pass) ;
HorizDWT(lowY ,HL,LL , f i l t e rWid th , pass) ;

P rop r i e t a ry (HH,HHx) ;
P rop r i e t a ry (LH,LHx) ;
P rop r i e t a ry (HL,HLx) ;

Sum(HHx,LHx, pSum1) ;
Sum(pSum1 ,HLx, pSum2) ;

Listing 1.1. Component-based front-end with data sets, handles and
proxy functions for a single iteration of degraining.

on-demand. This is useful for generating traces, invoking aggregate code and for
debugging the optimisation engine without changing the client application.

Components are constructed through an algorithmic skeleton interface. The
goal of skeletons in our library is twofold. Firstly, we need to separate loops
from programmer-written kernels so that transformations can be applied to the
iteration space. Secondly, we need to extract high-level metadata describing an
algorithm’s dependence structure in order to determine which transformations
can be applied and in what order. We make loose use of the skeleton terminology
from Nicolescu and Jonker’s work on skeletons in image processing [14] but do
not distinguish the numbers of inputs or outputs; instead these parameterise the
skeleton.

We place some constraints on the use of skeletons in our library for perfor-
mance reasons. By controlling the loop structures we can enforce an iteration
order and ensure that each element in the output is computed only once. The
latter constraint may be relieved through a scatter skeleton but note that this
will block loop fusion if the scatter distance is not limited to a subset of the
output (i.e. it is not a global operation). The former constraint is somewhat
configurable by the algorithm, in being able to choose forwards/backwards and
horizontal/vertical iteration parameters. This provides enough flexibility in man-
aging loop-carried dependencies to account for all of the components we have
investigated so far, but we plan to explore more complex skeletons in the future.

Figure 3 classifies the three non-proprietary components of degraining as skele-
tons. Summation matches a simple point skeleton parameterised by two inputs
and one output. There are two per-iteration data dependencies from the inputs
to a corresponding point in the output. Both the vertical and horizontal DWT
match the filter skeleton, parameterised by one input, two outputs and the direc-
tion and dimensions of the filter. Dependencies from the input to both outputs
cover the filter area. As a result, the dependence structures of the horizontal

176 J.L.T. Cornwall et al.

Summation
(2:1 / Point Skeleton)

Horizontal DWT
(1:2 / Filter Skeleton)

Vertical DWT
(1:2 / Filter Skeleton)

Fig. 3. Skeleton classifications for the non-proprietary components of degraining

and vertical DWT components change dynamically with the filter size param-
eter. Our optimisation engine accounts for this by generating aggregate loops
with an iteration space parameterised by this variable.

To illustrate the use of skeletons in our library, Listing 1.2 shows a partial im-
plementation of the vertical DWT component. The component object subclasses
an appropriate skeleton. The programmer provides a scalar kernel and an op-
tional vector kernel, expressed in terms of the arrays in1, out1, and out2, and
indices y, x and c. Our code generator is free to use whichever implementation it
prefers but the current implementation will always choose the vector kernel if it
can be used throughout the entire graph; otherwise scalar is chosen. filterHeight
is a parameter to the skeleton that is used inside the kernel and inside the ge-
tRadius function. The getRadius function encodes dependence metadata for the
skeleton by defining a windowed access region over the in1 array, centred over
the current iteration point (x, y) – this is discussed in more detail in the fol-
lowing subsection. Thus the metadata is provided by the programmer through
a simple overloaded function call in the skeleton.

2.2 Deriving Transformation Parameters from Metadata

We focus on loop fusion and array contraction [2] as potentially beneficial cross-
component optimisations to apply to the component graph, as demonstrated in
earlier work [18]. In order to apply these transformations safely we must derive
two parameters: the loop shift required for fusion and the contracted size of
intermediate data sets. Computing these parameters normally requires detailed
region and liveness analyses. We aim to demonstrate that explicit dependence
metadata can achieve the same result at a much lower cost.

Our metadata is inspired by the THEMIS proposal [12]. THEMIS mapped out
a set of properties to describe a procedure’s dependence structure. At each point
in its iteration domain and for each operand to a procedure, a set of indices
which may be read by the procedure is defined. Similarly for the data items
which may be written to, further sets are defined. The precise representation of
this information is left to the programmer. The authors give an example where

Explicit Dependence Metadata in an Active Visual Effects Library 177

class VertDWTSkel : public Fi l t e r 1DSke l e t on {
void s c a l a rKe rne l (. . .) {

f loat valT = in1 [y−(f i l t e r H e i g h t / 2)] [x] [c] ;
f loat valM = in1 [y] [x] [c] ;
f loat valB = in1 [y+(f i l t e r H e i g h t / 2)] [x] [c] ;
out1 [y] [x] [c] = (valM−(valL+valR)∗0 . 5 f)∗0 . 5 f ;
out2 [y] [x] [c] = valM−out1 [y] [x] [c] ;

}

void vectorKerne l (. . .) {
m128 valT = in1 [y−(f i l t e rH e i g h t / 2)] [x] ;
m128 valM = in1 [y] [x] ;
m128 valB = in1 [y+(f i l t e rH e i g h t / 2)] [x] ;

out1 [y] [x] = (valM−(valL+valR)∗0 . 5 f)∗0 . 5 f ;
out2 [y] [x] = valM−out1 [y] [x] ;

}

void getRadius (int ∗ r ad iu s) {
r ad iu s [0] = f i l t e r H e i g h t ;
r ad iu s [1] = 0 ;

}
} ;

Listing 1.2. Partial implementation of the Vertical DWT

affine functions are sufficient to represent dependencies for each iteration relative
to the position in the iteration domain. We find that a similar approximation is
suitable for all of the components in the degraining algorithm.

We assume that each skeleton’s kernel writes once to all points in the out-
put data set(s). This is not the case for our ”scatter” skeleton (not used in this
algorithm), which potentially overwrites a single point many times, but in that
case we simply introduce a larger shift to ensure that we do not read values from
the preceding component until they have permanently left the scatter window.
Dependence metadata is defined as the dimensions of a window centred over cor-
responding points in all of the input data sets. For a point skeleton this is simply
(1,1). The vertical filter skeleton will have dependence metadata represented by
(1,n), where n is the filter height, while the horizontal filter skeleton is similarly
characterised by (n,1). This simple scheme is sufficient to enable computation of
the transformation parameters for maximal fusion across the entire degraining
algorithm.

For a detailed explanation of deriving optimal array contraction parameters
see [20]. However, our approach allows these parameters to be derived trivially.
Their value is equal to the loop shift of the succeeding component (i.e. pre-
cisely the number of iterations that the intermediate data should be held for).
We use a small optimisation trick in computing the contracted size by noting
that indexing a contracted array requires an expensive modulus operation. How-
ever, by padding the contracted size to the nearest power-of-two, cheap bitwise
operations can be substituted for modulus arithmetic.

Finally, we put all of this together with a simple propagative algorithm that
walks the component graph, computing loop shifts and contracted data set sizes

178 J.L.T. Cornwall et al.

from the getRadius dependence metadata and the input transformation param-
eters to each component.

2.3 Code Generation

Our code generation scheme is slightly unusual. While it would be trivial to gen-
erate some text representing the shifted loops, fusion is a difficult transformation
to apply. By recognising loop fusion as an iteration space scanning problem –
that is, to consolidate kernels in common slices of a domain – we leverage the
polytope model for a solution. Polytopes are a mathematical formulation of a
loop nest, its statements and their dependence. Loop fusion in this model is
trivially solved by overlapping multiple polytopes.

We make use of the CLooG (Chunky Loop Generator) library [3] to achieve
this. CLooG is a loop generation tool based on the polytope model. It devises
an iteration scheme to visit all of the integral points in a polyhedron under a
system of scheduling constraints. Of the many possible loop nests that arise,
CLooG picks the one most optimised in control flow. A side effect of this choice
is that loop unrolling and fusion are applied implicitly in the polyhedral scanning
process. CLooG will not perform enabling transformations, such as loop shifting,
by itself. Instead, we provide the library with pre-shifted iteration spaces and
kernels with shifted and contracted array indexing, along with a guarantee that
no loop-carried dependencies exist between statements of different kernels.

CLooG requires a client code generator to fill the loops it generates with
appropriate kernels. The client supplies a unique identifier for a kernel when
creating a polytope, and is provided with sequences of the same identifiers dur-
ing fused code generation. One way to capture programmer-written kernels from
the target application, as demonstrated in the TaskGraph [4] library, is to use
template metaprogramming to build a high-level representation of the kernel
which can later be unparsed back to text. This approach provides a semantic
advantage and opportunities to modify the kernel. However, it imposes a syn-
tactic structure that is limited in flexibility and familiarity to the programmer.
We chose a less intrusive approach, using a simple pre-processing script to copy
kernels from C++ source files into strings within the skeleton classes. In the
future we could use source-to-source translators, such as ROSE [19], to perform
optimisations on the string-based kernels.

Kernel chaining and array contraction are applied in a pattern matching pre-
generation pass. The inN and outN references from programmer-defined kernels
are chained together with unique arrays called named arrX. These arrays are
instantiated with the contracted sizes computed in Section 2.2. They are freed
after the loops have finished. User-supplied input and output arrays are refer-
enced directly and are not involved in contraction. Listing 1.3 shows a fragment
of CLooG’s output for the degraining algorithm. Loop shifting, unrolling (not
shown here), fusion and array contraction have all taken place to orchestrate
the fully optimised algorithm. In the most aggressively fused case, the complete
listing extends to over fifteen thousand lines of code, ninety loops and numerous
unrolled fragments.

Explicit Dependence Metadata in an Active Visual Effects Library 179

for (y=29;y<=paddedHeight −16;y++) {
. . .
for (x=6;x<=9;x++) {

// Ver t i ca l DWT
{ m128 vValT = mm load ps(& named arr0 [y−1] [x] [0]) ;

m128 vValM = mm load ps(& named arr0 [y] [x] [0]) ;
m128 vValB = mm load ps(& named arr0 [y+1] [x] [0]) ;

named arr2 [i &3] = (vValM−(vValT+vValB)∗ vPoint5)∗ vPoint5 ;
named arr3 [i &3] = vValM− named arr2 [i &3] ;}
. . .
// Ver t i ca l DWT
{ m128 vValT = named arr5 [((−2−2)∗paddedWidth+i)&32767] ;

m128 vValM = named arr5 [((−2)∗paddedWidth+i)&32767] ;
m128 vValB = named arr5 [((+2−2)∗paddedWidth+i)&32767] ;

named arr6 [i &7] = (vValM−(vValT+vValB)∗ vPoint5)∗ vPoint5 ;
named arr7 [i &7] = vValM− named arr6 [i &7] ;}

}
}

Listing 1.3. A fragment of CLooG’s output for degraining

3 Experimental Results

The degraining algorithm is implemented in C++ with our skeleton optimisa-
tion framework. Two implementations are considered throughout this chapter:
one written with scalar operations and the other with SSE intrinsics. This com-
putation is trivially parallelised by statically partitioning the image to utilise all
cores of a multicore system. We allow the compiler to vectorise the scalar code
as it sees fit, but in practice it is able to do very little. Our target compiler is
Intel C/C++ 10.0.025 on the Linux 2.6 operating system, in 64-bit mode where
processor support was available. A brief comparison with GCC 4.1.2 showed this
to be the favourable choice for performance on all benchmarking systems. We use
the flag set ’-O3 -funroll-loops’ and append an architecture-specific optimisation
flag as recommended by the manual – using -xW for non-Intel processors.

Before looking at the experimental results it is worth noting a design decision
which impacts performance throughout this chapter. All of our benchmarks oper-
ate upon three-component interleaved RGB single-precision floating-point data.
In order to simplify the vector processing front-end, we chose to pad this data
to RGBA with an unused alpha channel in the SSE intrinsic implementations.
This raises memory pressure over the scalar implementations and introduces
significant redundant computation. One alternative design that we considered
involved separating colour channels into contiguous regions. Another used loop
unrolling to process RGBR, GBRG and BRGB pixel fragments. Both of these
approaches relieve memory pressure but complicate the front-end or back-end of
our optimisation framework. We leave these considerations for future work.

3.1 Baseline Performance

Figure 4 introduces the baseline performance of our algorithm in scalar and SSE
intrinsic forms. A spectrum of benchmarking platforms spreads the observed

180 J.L.T. Cornwall et al.

 0

 1

 2

 3

 4

 5

 6

 7

 0 2 4 6 8 10 12 14 16

T
hr

ou
gh

pu
t (

M
P

ix
el

s/
s)

Image Size (MPixels)

Xeon X5355, 2.6GHz, 8MB L2, 4GB, 8 core(s)
Core 2 Duo, 2.6GHz, 4MB L2, 4GB, 2 core(s)

Opteron 275, 2.2GHz, 2MB L2, 2GB, 4 core(s)
Pentium 4, 3.2GHz, 2MB L2, 1GB, 1 core(s)

 0

 1

 2

 3

 4

 5

 6

 7

 0 2 4 6 8 10 12 14 16

T
hr

ou
gh

pu
t (

M
P

ix
el

s/
s)

Image Size (MPixels)

Xeon X5355, 2.6GHz, 8MB L2, 4GB, 8 core(s)
Core 2 Duo, 2.6GHz, 4MB L2, 4GB, 2 core(s)

Opteron 275, 2.2GHz, 2MB L2, 2GB, 4 core(s)
Pentium 4, 3.2GHz, 2MB L2, 1GB, 1 core(s)

Fig. 4. Baseline throughput for scalar (left) and SSE intrinsic (right) implementations
of degraining on interleaved RGB data for a range of practical image sizes. The SSE
implementation pads RGB to RGBA before processing and unpads afterwards.

throughput to between 1 MPixel/s and 4 MPixels/s for useful image sizes. There
is a clear reduction in performance on three out of four systems with the SSE
implementation. In spite of the greater computational performance of SSE in-
struction units, memory performance dominates and suffers from the 33% larger
RGBA pixels. On the Xeon, this almost perfectly correlates to a 33% drop in per-
fomance as the eight-core compute-heavy architecture is largely memory bound
in this algorithm.

We build upon this data by recording the significant memory allocations and
deallocations made by the algorithm during its lifetime. A single image size
of 4000x3000x3 is used for comparison in later subsections; measurements scale
proportionally to other image sizes. Peak memory consumption is a performance-
limiting factor here – 970MiB for the scalar implementation and 1210MiB for
SSE. This clearly demonstrates the padding that has occurred in order to sim-
plify SSE application. Correlating this information with Figure 4 explains the
absence of data for the Pentium 4 on images larger than 12 MPixels. The peak
memory consumption exceeds the benchmarking system’s capacity, resulting in
page swapping and unstable performance. We omit data points where this has
occurred due to the difficulty in obtaining representative samples.

3.2 Fusion within a Single Iteration

We now explore the benefits of loop fusion and array contraction within a sin-
gle iteration of degraining. In fact, these transformations could also be applied
across iterations of the algorithm to achieve maximal fusion. This comes at the
expense of large loop shifts and an explosion in loop fragments in the output
code, however. The impact of these factors is explored in Section 3.3, but we
begin by constraining our transformations to a single iteration of the algorithm.

Figure 5 reports degraining performance with loop shifting and fusion applied
to all components in the graph. First we show results of fusiona alone; shortly
we show the impact of array contraction. Speed-ups are reported relative to the

Explicit Dependence Metadata in an Active Visual Effects Library 181

 0

 0.5

 1

 1.5

 2

 0 2 4 6 8 10 12 14 16

R
el

at
iv

e
S

pe
ed

-U
p

Image Size (MPixels)

Xeon X5355, 2.6GHz, 8MB L2, 4GB, 8 core(s)
Core 2 Duo, 2.6GHz, 4MB L2, 4GB, 2 core(s)

Opteron 275, 2.2GHz, 2MB L2, 2GB, 4 core(s)
Pentium 4, 3.2GHz, 2MB L2, 1GB, 1 core(s)

 0

 0.5

 1

 1.5

 2

 0 2 4 6 8 10 12 14 16

R
el

at
iv

e
S

pe
ed

-U
p

Image Size (MPixels)

Xeon X5355, 2.6GHz, 8MB L2, 4GB, 8 core(s)
Core 2 Duo, 2.6GHz, 4MB L2, 4GB, 2 core(s)

Opteron 275, 2.2GHz, 2MB L2, 2GB, 4 core(s)
Pentium 4, 3.2GHz, 2MB L2, 1GB, 1 core(s)

Fig. 5. Fused (but not contracted) speed-ups for scalar (left) and SSE intrinsic (right)
implementations of degraining on interleaved RGB data, relative to the faster baseline
implementations in Figure 4. The SSE implementation pads RGB to RGBA before
processing and unpads afterwards.

faster baseline results from Figure 4 – the scalar implementations in this case.
Fusion is a risky optimisation in a component environment because it displaces
the deallocations of temporary data from in-between loops. The fused loop nest
accumulates a large number of allocations beforehand, leading to a 230% increase
in peak memory consumption. Relative speed-ups are unimpressive and in fact
degraded throughput has occurred in several cases.

Loop fusion is not applied in vain, however. By consolidating kernels inside a
single loop nest, the transformation enables an array contraction optimisation.
There is only a need to hold intermediate data for the duration of its reuse
distance. We can communicate this information to the compiler by explicitly
reducing the size of connecting data sets and by wrapping accesses to their ar-
rays inside the contracted size. Figure 6 shows the final optimised speed-ups of
degraining with loop shifting, fusion and array contraction applied. Performance
is very positive in the scalar implementation with speed-ups ranging from 1.6x
to 4.8x. Peak memory consumption has been reduced by 30% over the origi-
nal implementation. Interestingly, the SSE implementation now begins to show
promise with speed-ups between 3.4x and 5.3x.

3.3 Fusion across Multiple Iterations

In the preceding section we chose to arbitrarily constrain fusion to within one
iteration of the degraining algorithm. We now explore the effects of fusion across
multiple iterations, right up to complete fusion of the component graph. Cru-
cially, fusing between iterations will result in loop shifts rising from 60KB to
nearly 1MB because the vertical DWT component has a row-striding window.
In addition, the amount of generated code grows superlinearly with the number
of fusions applied. These effects result in larger working sets, greater register
pressure and poorer instruction cache performance. Nevertheless, two large in-
termediate data sets can be contracted per iteration, following loop fusion, to
improve memory performance.

182 J.L.T. Cornwall et al.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 2 4 6 8 10 12 14 16

R
el

at
iv

e
S

pe
ed

-U
p

Image Size (MPixels)

Xeon X5355, 2.6GHz, 8MB L2, 4GB, 8 core(s)
Core 2 Duo, 2.6GHz, 4MB L2, 4GB, 2 core(s)

Opteron 275, 2.2GHz, 2MB L2, 2GB, 4 core(s)
Pentium 4, 3.2GHz, 2MB L2, 1GB, 1 core(s)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 2 4 6 8 10 12 14 16

R
el

at
iv

e
S

pe
ed

-U
p

Image Size (MPixels)

Xeon X5355, 2.6GHz, 8MB L2, 4GB, 8 core(s)
Core 2 Duo, 2.6GHz, 4MB L2, 4GB, 2 core(s)

Opteron 275, 2.2GHz, 2MB L2, 2GB, 4 core(s)
Pentium 4, 3.2GHz, 2MB L2, 1GB, 1 core(s)

Fig. 6. Fused and contracted speed-ups for scalar (left) and SSE intrinsic (right)
implementations of degraining on interleaved RGB data, relative to the fastest baseline
implementations in Figure 4. The SSE implementation pads RGB to RGBA before
processing and unpads afterwards.

 0

 5

 10

 15

 20

 25

 0 1 2 3 4 5

T
hr

ou
gh

pu
t (

M
P

ix
el

s/
s)

Number of Iterations Fused

Xeon X5355, 2.6GHz, 8MB L2, 4GB, 8 core(s)
Core 2 Duo, 2.6GHz, 4MB L2, 4GB, 2 core(s)

Opteron 275, 2.2GHz, 2MB L2, 2GB, 4 core(s)
Pentium 4, 3.2GHz, 2MB L2, 1GB, 1 core(s)

Fig. 7. Fusion and contraction within and across iterations of the SSE intrinsic imple-
mentation of degraining. At the fourth level of fusion, the entire algorithm is contained
within a single aggressively fused loop nest.

Figure 7 presents results for fusion and contraction across one, two, three and
four iterations of the algorithm. Only SSE intrinsic implementations are consid-
ered here, since they gave better average speed-ups in the preceding section. We
find that performance isn’t affected significantly in most cases. The Xeon system
sees a small improvement with two fused iterations over one and experiences a
similar drop from three to four fused iterations. We speculate that the heavily
memory bound system benefits from inter-iterative contraction and suffers less
from inflated working sets with its large L2 cache. The optimum average case
fusion appears to be at two iterations.

3.4 Impact on Multicore Scalability

A final experimental analysis concerns the scalability of the pre- and post-
optimised algorithm. The prevalence of multicore architectures places great

Explicit Dependence Metadata in an Active Visual Effects Library 183

 0

 5

 10

 15

 20

 0 1 2 3 4 5 6 7 8

T
hr

ou
gh

pu
t (

M
P

ix
el

s/
s)

Cores Used

Fused/Contracted, SSE
Fused/Contracted, Scalar

Unoptimised, Scalar
Unoptimised, SSE

Fig. 8. Scalability of four implementations of degraining for a 4000x3000x3 image on
a Dual Xeon X5355 2.6GHz (8 cores) with 8MB L2 cache and 4GB RAM in total

emphasis upon scalability for current and future performance gains. Our op-
timisations do not target this factor directly, but may indirectly shift scaling
bottlenecks by reducing memory pressure.

Figure 8 graphs the throughput of four implementations of degraining on
the Xeon system as they scale up to eight cores. These have been fully fused
within iterations but not between. An ideal result here would be linear scal-
ability, but contention for shared resources and redundant processing at the
edges – a side effect of naive data parallelism, albeit small compared to the full
data set – results in sublinear scalability in all cases. The post-optimised scalar
implementation achieves closer to linear scalability than either pre-optimised
case. However, the post-optimised SSE implementation experiences poor scala-
bility after only two cores. It is worth noting that both implementations achieve
roughly the same throughput with large numbers of cores – as both hit the
memory wall – while SSE gives substantial improvements when fewer are in
use.

Explaining these results is difficult because we have no direct method to de-
termine which data points are CPU or memory bound. We believe that memory
pressure is much lower in the optimised case, hence the large speed-ups, but
that the algorithm remains memory bound. There is some indirect evidence to
support this. Scalability is better when using scalar operations, particularly in
the optimised case. Overall performance is of course lower but the algorithm
scales more smoothly on a per-core basis. This is because SSE trades memory
bandwidth for higher computational performance, so the vectorised cases exhibit
high per-core performance but hit memory bottlenecks much sooner. Additional
evidence comes from the speed-ups gained from vectorisation: 2.1x with one
core in use and a little under 1.0x with eight cores. Padded data in the SSE
implementation allows this figure to drop below one.

184 J.L.T. Cornwall et al.

4 Related Work

Cross-component optimisation encompasses a spectrum of interprocedural tech-
niques including data placement [6], loop transformation [1,18] and implementa-
tion selection [11]. The key challenge is to tunnel across the execution and code
visibility barriers present in a component-based programming model without
compromising the program structure. Two enabling technologies, delayed evalu-
ation [5] and runtime code generation [5,4], have been demonstrated as effective
and attractive infrastructure for cross-component optimisation [15]. Generative
programming is a paradigm which encapsulates this functionality into metapro-
grammed self-optimising libraries [22,10], termed active libraries. Kelly et al.
proposed a metadata scheme [12] to carry information about component depen-
dence to an optimising engine. This information is critical in ensuring correctness
in code restructuring and efficiency in parallel data placement optimisations.

Algorithmic skeletons separate the problem-specific details of an algorithm,
expressed in the full power of the underlying language, from structural features
such as data dependence and iteration order. Skeletons have been researched ex-
tensively in parallel computing – as surveyed in [17] – as a programming model
with explicit parallelism and communication semantics. Benoit et al. later re-
fined the model to incorporate context-sensitive selection of operational param-
eters [7]. Adobe’s Generic Image Library [8] is an implementation of the skeleton
concept in the domain of image processing, enhancing fundamental data types
with colour information and providing relevant algorithmic patterns.

Polytopes, in the context of software optimisation, are a mathematical for-
mulation of loops, statements and dependence. In his seminal work on loop
parallelisation [13] Lengauer illustrated the decomposition of a program into the
polytope model and scheduling transformations to satisfy different processing
goals. Code generation is a polyhedral scanning problem surveyed by Bastoul
in [3] and incorporated into the CLooG library. Ongoing work by Pop et al. fo-
cuses on the integration of polytope transformations, through the CLooG library,
into the GCC compiler [16]. Cohen et al. achieved similar integration with the
Open64/ORC compiler [9], citing benefits in finding transformation sequences.

5 Conclusions and Further Work

In this paper we presented a visual effects library which takes an active role
in the cross-component loop and data optimisations in a client application. We
demonstrated the role of dependence metadata in replacing the complex pro-
gram analyses previously required to apply these code transformations safely.
Algorithmic skeletons underpin our metadata collection interface and proved
flexible enough to annotate all of the components in the degraining algorithm.
We implemented a code generation framework in the polytope model with the
CLooG library, which proved robust enough to correctly generate over fifteen
thousand lines of code and ninety loops in the most aggressively fused case.

Our evaluation showed that loop shifting and loop fusion alone were not suf-
ficient to make gains in performance, and in many cases resulted in degraded

Explicit Dependence Metadata in an Active Visual Effects Library 185

throughput due to inflation of the memory profile. Array contraction substan-
tially improved memory performance thereafter, giving 3.4x–5.3x speed-ups in
the SSE vector implementation. Peak memory consumption was reduced by 30%
as a side effect of this transformation. We explored the impact of our optimi-
sations on multicore scalability and demonstrated closer to linear scalability in
the post-optimised case. The SSE vector implementation initially scaled better
but hit the memory wall after only four out of eight cores were in use.

The work described in this paper is part of an ongoing project to develop a
domain-specific optimisation framework for industrial visual effects. Metadata
underpins our approach to performance optimisation, retaining useful informa-
tion that is lost or obscured within the program. We are presently exploring a
range of increasingly complex visual effects in order to identify new metadata
and to broaden the applicability of our collection system. In particular, we are
investigating the limits of algorithmic skeletons as a means of describing the
behaviour of industrial visual effects algorithms. We are also interested in iden-
tifying domain-specific metadata which may enable targeted optimisations in
the visual effects field or for subsets of the algorithms within.

References

1. Ashby, T.J., Kennedy, A.D., O’Boyle, M.F.P.: Cross component optimisation in a
high level category-based language. In: Danelutto, M., Vanneschi, M., Laforenza,
D. (eds.) Euro-Par 2004. LNCS, vol. 3149, pp. 654–661. Springer, Heidelberg (2004)

2. Bacon, D.F., Graham, S.L., Sharp, O.J.: Compiler transformations for high-
performance computing. ACM Comput. Surv. 26(4), 345–420 (1994)

3. Bastoul, C.: Code generation in the polyhedral model is easier than you think. In:
PACT 13 IEEE International Conference on Parallel Architecture and Compilation
Techniques, Juan-les-Pins, pp. 7–16 (September 2004)

4. Beckmann, O., Houghton, A., Mellor, M., Kelly, P.: Runtime code generation in
C++ as a foundation for domain-specific optimisation. In: Lengauer, C., Batory,
D., Consel, C., Odersky, M. (eds.) Domain-Specific Program Generation. LNCS,
vol. 3016, pp. 291–306. Springer, Heidelberg (2004)

5. Beckmann, O., Kelly, P., Liniker, P.: Delayed evaluation, self-optimising software
components as a programming model. In: Monien, B., Feldmann, R.L. (eds.) Euro-
Par 2002. LNCS, vol. 2400, pp. 323–342. Springer, Heidelberg (2002)

6. Beckmann, O., Kelly, P.H.J.: Efficient interprocedural data placement optimisation
in a parallel library. In: O’Hallaron, D.R. (ed.) LCR 1998. LNCS, vol. 1511, pp.
123–138. Springer, Heidelberg (1998)

7. Benoit, A., Cole, M., Hillston, J., Gilmore, S.: Flexible skeletal programming with
eSkel. In: Cunha, J.C., Medeiros, P.D. (eds.) Euro-Par 2005. LNCS, vol. 3648, pp.
761–770. Springer, Heidelberg (2005)

8. Bourdev, L., Jin, H.: Generic Image Library design guide (December 2006),
http://opensource.adobe.com/gil/gil design guide.pdf

9. Cohen, A., Girbal, S., Parello, D., Sigler, M., Temam, O., Vasilache, N.: Facilitating
the search for compositions of program transformations. In: ACM Int. Conf. on
Supercomputing (ICS 2005), Boston, Massachusetts (June 2005)

http://opensource.adobe.com/gil/gil_design_guide.pdf

186 J.L.T. Cornwall et al.

10. Czarnecki, K., Eisenecker, U.W., Glück, R., Vandevoorde, D., Veldhuizen, T.L.:
Generative programming and active libraries. In: Jazayeri, M., Musser, D.R., Loos,
R.G.K. (eds.) Dagstuhl Seminar 1998. LNCS, vol. 1766, pp. 25–39. Springer, Hei-
delberg (2000)

11. Furmento, N., Mayer, A., McGough, S., Newhouse, S., Field, T., Darlington, J.:
Optimisation of component-based applications within a grid environment. In: Su-
percomputing 2001: Proceedings of the 2001 ACM/IEEE conference on Supercom-
puting (CDROM). ACM Press, New York (2001)

12. Kelly, P., Beckmann, O., Field, A.J., Baden, S.: THEMIS: Component dependence
metadata in adaptive parallel computations. Parallel Processing Letters 11(4)
(2001)

13. Lengauer, C.: Loop parallelization in the polytope model. In: Best, E. (ed.) CON-
CUR 1993. LNCS, vol. 715, pp. 398–416. Springer, Heidelberg (1993)

14. Nicolescu, C., Jonker, P.: EASY PIPE: An “easy to use” parallel image processing
environment based on algorithmic skeletons. In: IPDPS 1901: Proceedings of the
15th International Parallel & Distributed Processing Symposium, p. 114. IEEE
Computer Society Press, Los Alamitos (2001)

15. Osmond, K., Beckmann, O., Field, A.J., Kelly, P.H.J.: A domain-specific inter-
preter for parallelizing a large mixed-language visualisation application. In: Rauch-
werger, L. (ed.) LCPC 2003. LNCS, vol. 2958, pp. 347–361. Springer, Heidelberg
(2004)

16. Pop, S., Silber, G.-A., Cohen, A., Bastoul, C., Girbal, S., Vasilache, N.:
GRAPHITE: Polyhedral analyses and optimizations for GCC. In: GNU Compilers
Collection Developers Summit, Ottawa, Canada (2006)

17. Rabhi, F.A., Gorlatch, S. (eds.): Patterns and skeletons for parallel and distributed
computing. Springer, London (2003)

18. Russell, F.P., Mellor, M.R., Kelly, P.H.J., Beckmann, O.: An active linear algebra
library using delayed evaluation and runtime code generation. In: Library-Centric
Software Design LCSD 2006 (2006)

19. Schordan, M., Quinlan, D.: A source-to-source architecture for user-defined opti-
mizations. In: Böszörményi, L., Schojer, P. (eds.) JMLC 2003. LNCS, vol. 2789,
pp. 214–223. Springer, Heidelberg (2003)

20. Song, Y., Xu, R., Wang, C., Li, Z.: Data locality enhancement by memory reduc-
tion. In: ICS 2001: Proceedings of the 15th International Conference on Supercom-
puting, pp. 50–64. ACM Press, New York (2001)

21. De Stefano, A., Collis, B., White, P.: Synthesising and reducing film grain. Journal
of Visual Communication and Image Representation 17(1), 163–182

22. Veldhuizen, T.L., Gannon, D.: Active libraries: Rethinking the roles of compilers
and libraries. In: Proceedings of the SIAM Workshop on Object Oriented Meth-
ods for Inter-operable Scientific and Engineering Computing (OO 1998). SIAM,
Philadelphia (1998)

Supporting Huge Address Spaces in a Virtual Machine
for Java on a Cluster

Ronald Veldema and Michael Philippsen

University of Erlangen-Nuremberg, Computer Science Department 2,
Martensstr. 3, 91058 Erlangen, Germany

{veldema,philippsen}@cs.fau.de

Abstract. To solve problems that require far more memory than a single ma-
chine can supply, data can be swapped to disk in some manner, it can be com-
pressed, and/or the memory of multiple parallel machines can be used to provide
enough memory and storage space. Instead of implementing either functionality
anew and specific for each application, or instead of relying on the operating sys-
tem’s swapping algorithms (which are inflexible, not algorithm-aware, and often
limited in their fixed storage capacity), our solution is a Large Virtual Machine
(LVM) that transparently provides a large address space to applications and that
is more flexible and efficient than operating system approaches.

LVM is a virtual machine for Java that is designed to support large address
spaces for billions of objects. It swaps objects out to disk, compresses objects
where needed, and uses multiple parallel machines in a Distributed Shared Mem-
ory (DSM) setting. The latter is the main focus of this paper. Allocation and
collection performance is similar to well-known JVMs if no swapping is needed.
With swapping and clustering, we are able to create a list containing 1.2×108 el-
ements far faster than other JVMs. LVM’s swapping is up to 10 times faster than
OS-level swapping. A swap-aware GC algorithm helps by a factor of 3.

1 Introduction

There are problems that require extremely large numbers of objects (hundreds of giga-
bytes to terabyte(s)) and that are as such not bound by processor speed, but rather by the
amount of available memory. Examples are simulations with large numbers of ’units’,
e.g., either molecular or fluid particles [16]; combinatorial search problems, e.g., find-
ing the most frequent sub-graph in a set of other graphs, which requires to store all the
graphs already processed; model checkers, which run a program on top of a (simulated)
non-deterministic Turing machine (NDTM) and for each non-deterministic choice, the
NDTM creates a copy of the simulated machine to explore both choices to check that
no illegal program states can occur. Memory requirements for all of the above range
from multiples of hundreds of gigabytes to a terabyte and above.

Since it is too costly or impossible to plug in enough memory into a single machine,
programmers squeeze their code and rely on the operating system’s swapping. Both of
which is suboptimal. Reimplementing data structures and algorithms to reduce memory
consumption takes time that is better spent implementing functionality and ensuring
program correctness. Also, the operating system’s virtual address space implementation

V. Adve, M.J. Garzarán, and P. Petersen (Eds.): LCPC 2007, LNCS 5234, pp. 187–201, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

188 R. Veldema and M. Philippsen

not only does not know what data is truly most recently used, but also the amount of
virtual memory available (including swap space) is fixed and limited. Extending the
amount of swap space is a tedious task for the system administrator and permanently
reduces the amount of disk space available to the user. Finally, few operating systems
compress swap space or exploit the aggregate memory and swap space available in a
cluster.

Our LVM (Large address space Virtual Machine) swaps objects to disk in com-
pressed format and provides a simple distributed shared address space to use all of a
cluster’s memory and disk space. While this functionality could also be implemented
by the programmer, a virtual machine solution provides a separation of concerns. The
programmer can concentrate on the correctness and efficiency of the application code
instead of optimizing the low-level address space consumption. Also, address space op-
timizations for one particular program are often useless for the next program whereas
a large address space virtual machine can be reused. As we need to modify basic VM
data structures, LVM is written from scratch.

In sections 2.1 and 2.2, we describe the virtual address space. LVM’s object man-
agement is described in Sections 2.3 and 2.5. In Section 2.4 we describe our optimized
class library. Section 3 and 4 present performance numbers and cover related work.

2 LVM Implementation

Our compiler frontend [18] generates a register-based intermediate representation which
is similar to LLVM [12]. This is fed into LVM that employs both an interpreter and a
Just-In-Time compiler (JIT) to execute the code. The code is first interpreted, and if
found important enough, it is compiled to native code. To ensure portability, our JIT
is very simple: we compile a LVM-function first to C-code and from there to a shared
library that is dynamically linked while the program is running.

We chose to use our own register-based intermediate for LVM instead of standard
Java bytecodes to easily experiment with language extensions, annotations, compiler
optimizations, etc. without being encumbered by Java’s bytecode verification, conver-
sion from a stack machine to a register machine, etc.

In LVM we focus on memory-conserving compiler optimization. For example, LVM
performs escape analysis [7,13,19] and allocates objects that do not escape the allocat-
ing function/thread on the stack instead of the garbage collected heap to reduce pressure
on the garbage collector.

2.1 Implementing the Address Space

The main problem with implementing a huge, distributed address space is addressing
objects flexibly and efficiently. Implementing an object reference as a direct memory
pointer is inflexible because it does not allow objects to easily move in memory and
because it provides little information for analysis. On the other hand, a reference should
be small, since there usually are many references that need to be kept in memory and are
manipulated often. For performance, they should not be larger than the operand width
of machine instructions. For these reasons, we employ 64 bit references to encode an

Supporting Huge Address Spaces in a Virtual Machine for Java on a Cluster 189

Machine Segment Obj−ID Flags
16 bits 24 bits 16 bits 8 bits

Fig. 1. Reference layout

object’s location in memory in a cluster. Every access to an object thus first needs to
decode the object reference to retrieve a local object pointer. While this translation costs
at run time, it allows us to access an address space that spans multiple machines. This
indirection scheme is fully Java compatible as references are transparent in Java.

Every cluster node’s local address space is divided into segments (of a megabyte).
Objects are allocated inside such segments. If an (array-) object larger than a single
segment is required, a segment is allocated that is large enough to hold it. Otherwise,
arrays are treated as ordinary objects. Note that segment size is a trade-off between false
sharing (swapping in a segment may also swap in unused data) and disk bandwidth.

An object reference is structured as shown in Fig. 1. The machine field encodes the
number of the cluster node on which the object is allocated, the segment field indicates
which segment on that machine it resides, and the object-id fields gives the offset (in
multiples of 32 bytes) at which the object is found in the segment.

Because references are no direct memory addresses they need to be decoded. Fig. 2
shows a snippet of Java code and its corresponding LVM code where this is required.
The latter is simplified, as we have switched off escape analysis, type inference, method
inlining, and the removal of superfluous reference decoding.

In main(), first a new Data instance is created. This results in the invocation of
new object (which returns a reference). The reference is passed to the constructor in ar-
gument register %R2 64. The constructor uses refToObjectPtr to decode the reference
to a physical object pointer. Afterwards it performs the assignment. The invocation of

class Data {
int value;
Data() {

value = 12345;
}
void foo() {}

public static
void main(String args[]) {

Data d = new Data();
d.foo();

}
}

Data Data :
%R0 64 = call refToObjectPtr(%R2 64)
(’i’, (%R0 64 + 12L)) = 12345

Data main 3Ljava lang String 2:
%R2 64 = vtable Data
%R0 64 = call new object(%R2 64)
%R2 64 = %R0 64
%R0 64 = call Data Data (%R2 64)
local(’l’, 14E,-8) = %R0 64
%R2 64 = %R0 64
%R0 64 = call refToObjectPtr (%R2 64)
%R0 64 = *(’l’, (%R0 64 + 0))
%R0 64 = *(’l’, (%R0 64 + 104))
%R2 64 = local(’l’, 14E, - 8)
%R0 64 = indirect call %R0 64(%R2 64)

Fig. 2. Java example and resulting LVM code

190 R. Veldema and M. Philippsen

javaObject *
refToObjectPtr(object reference t ref) {

if (gc requested) gc barrier enter();
if (ref == 0) throw null pointer exception();
test dsm(ref);
Segment*s = locate segment(ref.seg number)
s->update timestamp();
javaObject *q = s->data + (32 *

ref.get seg index());
return q;

}

Segment seg arr[MAX SEGMENTS PER MACHINE];

Segment*
locate segment(int index) {

Segment *s = &seg arr[index];
if (s->is swapped out()) {

s->swap in();
in core segments++;
if (in core segments > THRESHOLD)

swap out oldest segment();
}
return s;

}

Fig. 3. Decoding a reference to an object

foo() in main() requires the vtable that is located in the first 8 bytes of the object. So
again, the reference is decoded to a physical pointer by refToObjectPtr. The vtable is
accessed, the method pointer is extracted, and foo() is invoked, passing the reference to
this in %R2 64. With compiler optimization enabled, the superfluous calls to refToOb-
jectPtr within a basic block are eliminated.

More interesting is how address encoding and decoding works in the presence of
LVM’s garbage collection in a distributed cluster environment, in the presence of mul-
tiple threads, and when swapping is integrated.

Fig. 3 shows the pseudo code for refToObjectPtr. Because of its ubiquity, refToOb-
jectPtr is also used as the GC barrier. Whenever the garbage collector needs to wait for
all threads to stop, all threads are gathered in gc barrier enter();

If it is not a null-pointer that has to be decoded, the current thread will either stay
at the current cluster node if test dsm determines that the reference addresses a local
object. Otherwise, if it detects a remote access, the DSM system is called to migrate the
currently executing thread to the cluster node that holds the addressed object.

Finally, the segment in which the object resides is retrieved. If necessary, the segment
is swapped in from disk and decompressed. The offset within the segment is used to
compute the object’s address.

Whenever the limit of the number of in-memory segments has been reached, the old-
est segment in memory is compressed1 and swapped out. This ensures that the operating
system’s swapping mechanism is never triggered, as LVM will never use more memory
than core memory. LVM speeds up swapping by delaying all swap-out operations until
the next swap-in operation. Which segment is least recently used is determined by a
logical clock that is set by update timestamp() upon each access. Update timestamp()
increments a global variable and sets the segment’s timestamp to it. This only takes
a few machine instructions. To further increase performance, LVM can be directed to
swap-out a number of its oldest segments instead of just one segment when a memory
shortage is encountered. The result is that most disk-IO can be performed in parallel.

1 For compression we use the LZO library since it combines high compression speed with rea-
sonable compression ratios [1].

Supporting Huge Address Spaces in a Virtual Machine for Java on a Cluster 191

Note that after the operating system’s page level swapping loads a page, the OS does
not track individual page hits. In contrast, LVM knows exactly which segments have
been used last.

To ensure safe multi-threaded access to the segments, segment access needs to be
protected by a lock. However, most segments cannot be candidates for swapping be-
cause they are too new. For such segments, LVM bypasses the lock for performance
reasons and updates the timestamp with an atomic increment.

2.2 DSM Support

Where most DSM systems fetch remote data whenever a non-local access occurs, LVM
relies solely on thread migration. Upon detecting a non-local data access, the thread (in
its entirety) migrates to the machine that hosts the data to be accessed.

We employ this strategy for two reasons. First, all DSM protocols that fetch data
for their operation (lazy, entry, scope consistency protocols, etc.), all require caching
of objects and/or maintenance of copies for later diffing to find local changes. Also,
they need some extra memory to store administrative data per page/object (for example,
which machine has a copy, and in which access mode). These memory overheads impact
memory usage and are unacceptable for our target applications.

Secondly, we can assume that any non-trivial parallel application will touch large
amounts of shared data. If the size of the data is in the range of terabytes, the bandwidth
requirements for achieving good speedup will be extremely high. This again means that
traditional DSM protocols will mostly be a no-go for our target applications.

Hence, conceptually a call of test dsm returns at a different node if migration is nec-
essary. Of course, the performance of thread migration itself is crucial in this approach.
We found that the key is a slightly verbose, machine independent stack-frame and call
stack format. First, we use a separate call stack that is independent of the C call stack.
Second, both the JIT and the interpreter maintain the same (machine independent) stack
frame formats. Whenever the intermediate code writes to a ’virtual register’, instead of
writing to a physical register, it writes to a thread-local variable. While this slows down
sequential code, it allows very fast thread migration as stack frames do not need to be
analyzed to locate live registers/variables; stack-frames can be copied between cluster
nodes verbatim. The complete call stack is kept in a migration-friendly format for ef-
ficiency (at the cost in baseline-performance). A stack frame itself consists of a return
address, a parameter block, and a local variable block. The return address is a tuple
{function *prev function, int prev insn in func, int prev frame offset}.

Thread migration traverses the stack using the prev frame offset links. For each ac-
tivation, a translation table entry of the form {prev function->name, offset in stack} is
added and sent with the stack to the receiver. The receiver uses the translation table to
plug in new function addresses (as the receiver might have allocated functions at differ-
ent addresses). Migration therefore takes a stack traversal at both sender and receiver
with an additional hash look up per stack frame at the receiver to find function addresses
for given function names.

To support efficient stack allocation of objects (escape analysis) under thread migra-
tion, we maintain a separate per-thread stack using a mark-release algorithm.
Management of the non-escaped object stack is then as follows. At function entry,

192 R. Veldema and M. Philippsen

we record the top-of-the-stack pointer. Each non-escaped object allocation bumps the
top-of-the-stack pointer to allocate memory. At function exit, the top-of-the-stack is re-
stored, thereby freeing all objects pushed while the function was running. Of course,
the compiler only generates code for the above if a function actually allocates an object
on the stack.

We maintain a separate data structure for non-escaped objects for two reasons. First,
it is difficult to allocate objects directly on a thread’s call stack, because after a thread
has moved, the call stack will likely be at a different address and also the stack-allocated
objects. Any references to the object would need to be corrected to point to the new
address. Second, the garbage collector needs to be able to determine if a value found on
the stack is a reference or not, even if it is to a stack-allocated object. For this purpose,
each run of the GC quickly builds a per-thread bitmap. An enabled bit here says that
the address in the thread-local stack starts an object. Building the bitmap is easy as all
non-escaped objects are allocated in one single stack data structure, allocated one after
the other.

At thread migration, the stack-allocated objects are transferred along with the call
stack of the thread. However, at the remote machine, each stack-allocated object will
have an invalid method table pointer (which would be at a different address in each
LVM instance). For each stack-allocated object, the sender of the stack therefore sends
along a type descriptor of the object. The receiving machine uses the type descriptor to
patch in the new machine-local method table references.

For speeding thread migration, we maintain both a thread pool of operating system
threads and a pool of LVM-thread objects. When an LVM-thread migrates away, the
LVM-thread object is put into an object pool and the operating system thread that exe-
cutes the thread’s instructions performs a longjmp back to its start routine where it waits
for its reactivation. When an LVM-thread migrates to a machine, we thus only need to
pick a preallocated LVM-thread object (which includes its call stack and thread-local
heap), initialize it with the migrated LVM-thread’s data, and activate a thread from the
thread pool of operating system threads. Maintaining an object pool saves us the oper-
ating system interaction to allocate enough memory.

In addition to accessing remote objects, there are two other language features that
require DSM support. First, to maintain Java’s global variables, every write to a global
variable is broadcast to all machines. A read of a global variable is therefore a purely
local operation. Second, a distributed locking scheme is needed to support Java’s ’syn-
chronized’ functionality. Each wait, lock, and unlock causes a message to be sent to
the owner of the object on which the operation was called. The caller then waits for an
acknowledge message. This acknowledgement is sent after the lock-owning machine
has successfully executed the lock, unlock, or wait.

2.3 Object Allocation Strategies

LVM implements Java’s automatic memory management. It tries to allocate objects in
the following order: (1) try first to allocate the object in an in-core memory segment.
If that fails due to lack of memory capacity, (2) try to allocate the object on a remote
node of the cluster. If the cluster’s core memories are full as well, (3) continue locally
and try to allocate by swapping out some old segment. Only if the swap space is full

Supporting Huge Address Spaces in a Virtual Machine for Java on a Cluster 193

as well, (4) a garbage collection is triggered to free local core memory. In short, LVM
tries the cheapest allocation method first and proceeds to the most expensive one. Note
that phases (2) and (3) can be reordered for a different allocation scenario.

If a program needs arrays larger than a single machine’s memory, our HugeArray
class should be used that internally fragments an array.

Because lack of object locality causes excessive thread migration, we allow the pro-
grammer to suggest object co-location. We do so by extending the semantics of new to
express that the new object is best located near to or far away from another object. Since
in general, establishing optimal co-allocation is very hard to perform by static compiler
analysis, we chose to offer this optional annotation scheme to specify locality.

The syntax for our (optional) directive is:

• new /*$ close to(ref) $*/ Type
• new /*$ far from(ref) $*/ Type

where ’ref’ is a reference to a previously allocated object. The directive is enclosed
in Java style comments so that the code still compiles correctly when a standard Java
compiler is used. We implement close to by first trying to allocate the object on the
same segment (potentially swapping it in). If that fails, LVM tries to at least allocate
it on the same cluster node. With far from, we explicitly try not to allocate the object
on the same segment. However, we make no special effort to allocate it on a different
cluster node. This allows the allocating machine to fill up first, plus it may reduce thread
migration.

Close to can also be used for maintaining load-balancing by the programmer forcing
object allocation close-to its thread-objects (which are allocated round-robin by LVM).

2.4 Reducing Thread Migrations

There are a number of simple Java constructs that can potentially cause excessive thread
migrations. See, for example, the code in Fig. 4. If the arrays ’a’ and ’b’ are allocated
on two different cluster nodes, each array element comparison will cause two thread
migrations (once to the machine holding ’a’ and once for going back to access ’b’).

For this reason, we provide a small class library containing elemental operations
on arrays. To be exact, we provide methods for fast addition, subtraction, multiplica-
tion, and division of two arrays. In addition, Java’s class library already offers java.util.
Arrays.equals() and java.lang.System.arraycopy() to compare and copy two arrays.
LVM’s optimized methods test if both arrays are local, and if so, they do a local op-
eration. If one of the two arrays is remote and the other one is local, the local array is
sent to the remote cluster node which then executes the operation locally. This reduces

boolean equal arrays(int[] a, int[] b) {
for (int i=0; i<a.length; i++)

if (a[i] != b[i]) return false;
return true;

}

Fig. 4. Comparing two arrays

194 R. Veldema and M. Philippsen

the communication load to a total of two messages instead of 2·N messages for an N
element array. To reduce the load on the heap, LVM does not allocate the remote copy
on the garbage-collected heap, but instead it is allocated on the system heap. This re-
duces the pressure on LVM’s garbage collector. Note, that because we allocate objects
on the system’s heap we bypass LVM’s swapping mechanism as well. For this reason
we reserve a bit of the system’s memory for this purpose in advance.

The same problem occurs when copying a graph of objects or when comparing two
object graphs for equality if the objects are spread across the cluster. LVM solves both
problems by means of a multi-machine object serialization. Object serialization is the
process of converting a graph of connected objects into a byte array. Deserialization is
the inverse operation. Multi-machine object serialization is specifically built to deal with
object graphs that are potentially distributed across multiple cluster nodes. It serializes
as many objects on a single machine as possible. It keeps already serialized objects in a
hash table to guard against cyclic referencing of objects. Whenever a cycle is detected, a
reference to the already serialized object is put into the byte array instead of the object’s
data. Whenever no more references to local objects can be serialized, the multi-machine
serialization process continues on the first machine that holds a remote reference. To
detect cycles that span machine boundaries, the hash table is sent along. Note that this
scheme relies on LVM’s property that references are cluster-wide valid.

Only when used for cloning of an object graph, the deserialization creates the object
graph on the LVM heap. Otherwise, when serialization is used for testing equality of
object graphs, the object graph is deserialized to the system heap using the system’s
malloc instead of LVM’s garbage-collected heap.

2.5 Distributed Garbage Collection

Java prescribes the use of a garbage collector to automatically remove objects that are
no longer reachable. Unfortunately, most of the (local or distributed) garbage collection
schemes proposed in the past have high memory overheads. Since LVM must conserve
memory whenever it can, the number of choices for designing LVM’s GC are limited.

We preferred a distributed mark-and-sweep collector over a copying collector (gener-
ational or otherwise) since the latter waste half of the memory which is intolerable given
our project’s goal of an efficient huge object space (in our benchmarks, intra-segment
free-list fragmentation is no problem). Moreover, unlike some distributed garbage col-
lector schemes, we do not separate into local and a global garbage collection phases,
again due to memory concerns: to support machine-local GC’s, a machine must keep
track of incoming references, which can grow to a large set. Also, the gains compared
to only using a global GC are low [17]. Hence, LVM starts a garbage collection phase
whenever a cluster node hits its local heap usage boundary. It then requests a GC thread
to be started on every cluster node.

Instead of marking the objects themselves, mark-and-sweep collectors can also use
mark-bitmaps to store the marks. In addition, we use an allocated-bitmap to mark a
location as allocated when a new is executed. Only the bit for the start address is set.
The garbage collector can efficiently check that an object reference is valid by testing a
single bit in the allocated-bitmap. During the sweep phase, an object is quickly deter-
mined to be garbage if the corresponding bit in the mark-bitmap is unset. Because we

Supporting Huge Address Spaces in a Virtual Machine for Java on a Cluster 195

allocate objects in 32 byte increments, we require a 4 Kbyte bit array to cover a 1MByte
segment.

Naive collectors are costly if they cross high latency network boundaries too often
(going to another cluster node, swapping a segment in/out). LVM uses a number of
optimizations to keep these costs down. First, to reduce the amount of GC-induced
swapping, as many in-core references as possible are marked before any objects are
marked that are known to be swapped out. For this reason, we maintain two to-do lists:
one list Core for in-core objects to be marked, and one set Swap for swapped-out objects
to be marked. Second, we sort the references in the Swap set based on the reference’s
segment before starting the mark phase for the referred-to objects. This ensures that
objects on the same segment are marked together, hence swapping is further reduced.
To reduce the cost of sorting the Swap set, we implement the Swap set as a hash table
of buckets. Only the individual buckets then need to be sorted. We will hereafter call a
GC using swap sets ’lazy swap GC’ in the measurements.

Third, when a remote reference is seen, it is buffered till either the local machine has
no more local marking to do, or the buffer is full (max. 1024 references per buffer). To
ensure a level of flow-control, only one outstanding mark-buffer is allowed per target
machine.

After the mark phase has finished, every machine independently sweeps its local
memory. Segments that were left untouched during marking are freed in one go. Seg-
ments that are only partially filled have their free lists rebuilt.2

3 Performance

To demonstrate LVM’s effectiveness we first need to show that it is competitive with
a standard JVM for small memory demands and that it outperforms the OS swapping
algorithms for larger memory footprints.

We measure on two different machines (as our cluster’s policy does not allow long
running jobs). For the micro-benchmarks, we use two 2 GHz Athlon machines equipped
with 2 gigabyte RAM each. For the application benchmarks, we use a cluster of Intel
machines with 3 GHz Woodcrest CPUs. Each machine is equipped with a SATA disk
with at least 80 GByte free space. All machines are equipped with both 10 GBit Infini-
band and 1 GBit Ethernet. In all cases, LVM is configured to use at most 1.7 gigabyte
RAM per machine for storing Java objects and arrays. This leaves 300 megabyte for
the operating system, networking software (communication buffers), the LVM garbage
collector, the JIT-ed code, and the interpreter’s data.

3.1 Micro Benchmarks

To measure the performance of object allocation and object access, we allocate (see
Fig. 5) and traverse (see Fig. 6) linked lists of increasing lengths. To be exact, we start
the program, create and traverse a list in a loop (10 iterations), and exit the program.

2 Instead of using physical pointers that become invalid when a segment is swapped in at a
different memory address, LVM implements the free list as offsets from the start of the segment
to the next free space within the segment.

196 R. Veldema and M. Philippsen

0 20 40 60 80 100 120 140
size (1 unit = 10^6 list elts)

0

5000

10000

15000

20000

25000

30000

35000

40000

ti
m

e
 (

se
c) JDK

LVM + without lazy GC
LVM + OS-swap
LVM + 2 machines

Fig. 5. LinkedList Creation

After a list summation, each list becomes garbage. The VM is restarted for each new
list length.

We perform the same test both with SUN’s JDK 1.6 and LVM. Starting at 2 Gbyte
SUN’s VM relies on the operating system’s swapping mechanism whereas LVM already
starts to swap at 1.7 GByte. LVM outperforms SUN’s JVM in both list creation and list
traversal as soon as swapping is needed. We stop measuring JDK’s performance at lists
with 7.8×107 elements due to the excessive time needed.

To show that LVM-directed swapping is much more efficient than OS-level swap-
ping we disabled LVM’s swapping module (see LVM+OS-swap numbers) and instead
relied on the OS’s virtual memory implementation. Note that in OS-LVM, the code still
contains calls to refToObjectPtr. It is interesting to see that with OS-level swapping
the system becomes very unresponsive as soon as the OS starts to compete for mem-
ory against the JVM or the LVM-OS version. This competition also impacts messaging
speed as I/O buffers compete for memory as well. When LVM’s internal swapping is
enabled, OS performance does not suffer because enough memory is always reserved
for it.

The irregularities in the results are caused by the GC. For example, if many GC
passes occur when the lists are almost completely constructed, a lot of memory must be
scanned, the reverse when lists are still small. The irregularities are thus a harmonic of
both the heuristics LVM uses to decide when to collect garbage and the list sizes.

The builtin-swap version of LVM is slightly slower in object allocation due to the
extra code needed (2 if statements) on the fast path to test for the need to swap. It is
clear that data compression is not a bottleneck (LZO compresses at 100 MB/s and de-
compress at 310 MB/s on the 2Ghz Athlons). A 1 MByte LVM segment is, in the list
benchmark, on average compressed to a 360 KByte file on disk (approx 36%) which
reduces disk-I/O time and frees disk space. Using two machines, we first fill one ma-
chine’s core memory, then the other’s. The speedup is not caused by parallelism, as

Supporting Huge Address Spaces in a Virtual Machine for Java on a Cluster 197

0 20 40 60 80 100 120 140
size (1 unit = 10^6 list elts)

0

1000

2000

3000

4000

5000

6000

7000

8000

ti
m

e
 (

se
c)

JDK
LVM + without lazy GC
LVM + OS-swap
LVM + 2 machines

Fig. 6. LinkedList Traversal

there is still only one active thread in the cluster which migrates to the machine with
free memory. The List/Node/Data constructors as well as all get/set methods are all
inlined. Hence, method call overhead is thus not an issue in this benchmark.

LVM’s performance greatly depends on the overhead of thread migration. Here, our
implementation is extremely fast. A one-way thread migration takes just 54.9 μs over
gigabit Ethernet. With Infiniband, the latency of thread migration drops to 19.9 μs.
These times include thread exit, start, message transfer, and stack patching.

3.2 Application Benchmarks

JCheck is a model checker for a simplified Java dialect called Tapir. The model-
checker tests all possible interleavings of thread-executions to find program bugs. Each
state consists of a simulated heap and simulated threads. A Tapir program is translated
into a simple bytecode format. At each point in the Tapir program where a context
switch may occur, the Tapir compiler inserts a context switch bytecode instruction.
Bytecode fragments delimited by context switch instructions are then emitted as sepa-
rate Java functions.

To reduce the search space, each thread maintains a hash table of the states it has
already seen. Before proceeding with a new state, a thread checks in the hash table if
that state has already been visited. JCheck gives each thread its own private hash table
to reduce synchronization costs. Once a new state is found, a thread publishes the new
state by adding a reference to it to all the other thread’s hash tables. As each thread
maintains its own hash table, memory usage increases with cluster size.

For our LVM test, we wrote a simple Tapir program in which two processes
alternatingly send an RPC to each other (which includes message delays and

198 R. Veldema and M. Philippsen

Table 1. JCheck results

1 machine 2 machines 4 machines 8 machines
Time, no-lazy-GC (seconds) 8830.2 3728.2 429.8 1553.6
Time lazy-gc (seconds) 3803.7 1077.9 412.7 1483.1
Avg. Heap (MByte total in cluster) 10196 9152 10857 24152
Avg. #thread migr. per machine (× thousand) — 69.7 111.2 212.3

object-allocations). Note that this is almost the smallest problem to limit execution time
(using SUN JDK, JCheck requires more than a day).

The memory requirements (see Table 1) are extreme due to the number of states
that need to be explored and the corresponding hash tables for them. To reduce the
number of thread migrations, JCheck heavily uses the optimized arraycopy, treeCopy,
and treeEquals methods (see Section 2.4). Thread migration mostly happens whenever
a thread attempts to publish a new state in hash tables belonging to other threads.

Lazy swap GC is a big gain for JCheck; GC is three times faster with it which shows
most clearly on the 1 machine measurements (where run time is only 2.3 times faster as
GC is only a portion of the run time). When using more than one machine, preformance
is greatly influenced by the speed in which the thread’s hash tables are kept up-to-
date to allow pruning of the search space. With eight machines (threads), this becomes
hard. The increased heap usage with eight machines is caused by missing search-space
pruning opportunities (and thereby lowering speedup). Swap compression allows a 1
MB segment to be compressed to a 65 KB file on average.

The Griso sub-graph locator finds occurrences of a graph P in another graph K.
Since nodes and edges may be rotated, a complicated graph isomorphism test is needed.
The algorithm first creates a set of permutations of P with the outgoing edges of each
node permuted to create a set. This set is reduced by only allowing canonical forms of
the graphs into the set (while also converting K to its canonical form). The set is then
partitioned into N parts, so that each of N worker threads can locate embeddings of a
permutation of P in K.

Memory consumption (see Table 2) is large since all canonical forms of the per-
mutations of P need to be stored (again excluding a standard JVM). Fortunately, with
increasing numbers of machines, the memory requirements per machine drop such that
with the graph sizes that we have chosen, with 8 machines the graphs almost fit in the
cluster’s memory (1864 MByte per node, with an LVM limit of 1700 MByte causes
164 MByte worth of graphs on average that need to be swapped). This results in the
superlinear speedup seen when going from 4 to 8 machines. Unfortunately, Griso can
take very little advantage of the class-libraries provided. This causes the high thread-
migrations counts.

Table 2. Griso results

1 machine 2 machines 4 machines 8 machines
Time (seconds) 274752 176400 29871 6962
Avg. Heap (MByte total in cluster) 15531 14838 15472 14912
Avg. #thread migrations per machine — 34644978 25242531 12315766

Supporting Huge Address Spaces in a Virtual Machine for Java on a Cluster 199

Besides using a lot of objects, Griso also creates a lot of garbage. On 8 machines,
839 seconds is spent on garbage collection using lazy-swap-GC in 50 GC passes. Each
GC pass takes about 16 seconds. Without lazy-swap-GC, this increases to 950 seconds
total for GC, or 116 seconds longer. Each GC pass freed about a gigabyte of memory in
mostly small arrays used to hold references to graph nodes (for cycle testing in graphs).

4 Related Work

LVM implements a host of techniques to increase available memory and performance.
For each of these we will give a few entry points to the related work.

Operating systems. Swapping and compression of swap space is a technique usually
associated with operating system implementations and out-of-core applications. In [8]
Linux was adapted to compress MMU pages before swapping them out to disk. A small
cache is used to store pages being compressed. In [5,15] Linux is adapted to divide
memory into two parts. One holds compressed pages, the other uncompressed. Instead
of swapping out an uncompressed page, the system first attempts to compress the page
and to place it into the compressed memory area. That avoids many disk-IO operations.
Our system is implemented on top of an OS. Hence, LVM is not restricted to the MMU’s
4K page sizes, it is portable, and allows for multiple techniques to reduce memory
pressure (escape analysis, lazy GC swapping, etc.).

Operating systems can also increase a process’s available memory by remote swap-
ping or remote paging. One approach is described in [10]. Here, a special I/O device
’nswap’ is registered in the kernel. Related to this is [9], where the lowest-level page-
manager in an operating system is made cluster-aware. Both approaches perform remote
paging to allow idle nodes to cache pages of heavily loaded nodes to decrease reliance
on slow disks for swapping. In contrast, LVM starts to remote-allocate objects once lo-
cal memory is full and performs thread migration to access them afterwards.

Distributed garbage collection. A modified Linux notifies the Jikes RVM in [11]
that a page is about to be swapped out. Whenever this happens, the GC creates a list of
outgoing references from that page. Objects on that page are then part of the root-set
for the GC’s marking phase. All references to objects on swapped-out pages are ignored
in subsequent collections. In contrast to LVM, RVM is restricted to a single machine
and to the size of the OS level virtual address space. Closest to our distributed garbage
collector is the system of [17]. However, it targets ABCL/f instead of Java, uses a tra-
ditional data fetching DSM system (with the associated memory overheads discussed
above), and assumes that all data fits into core memory.

Locality directives. Related to our locality based directives is ccmalloc [6], an alter-
native to malloc that allows to allocate something close to some other ccmalloced block
of memory. However, the authors’ goal is cache optimization instead of swap optimiza-
tion. Moreover, they target C instead of Java.

Out-of-core & DSM. There have been a number of Java-based DSM systems. An
overview of DSM systems can be found in [14]. We will, however, concentrate on out-
of-core in combination with DSM.

The interaction between, out-of-core applications, compilers, and execution on a
DSM system is investigated in [2]. The authors perform source code analysis to add

200 R. Veldema and M. Philippsen

an inspector-executor style parallelization method. An inspector finds probable data us-
ages and hands these over to the executor for the execution of the program. We perform
no source code analysis to detect parallelism but rely on Java threads explicitly created
by the programmer. Moreover, our different DSM style that relies on thread migration
instead of data fetching is advantageous for memory-greedy applications. The compiler
analysis for out-of-core applications in [3] inserts prefetch instructions to fetch array
data from disk. The techniques described here are orthogonal to LVM: instead of insert-
ing prefetch instructions, the LVM front-end compiler could try to call refToObjectPtr
as early as possible.

LOTS [4] is closest to LVM. It is also a DSM that can swap out objects to disk.
However, the mechanisms and techniques are quite different. LVM compresses data on
disk while LOTS does not. Furthermore, LOTS can only use a third of the available
memory/disk space for storing objects. LVM uses a virtual machine approach, while
LOTS is provided as a C++ library. LOTS is an object-based DSM that migrates data
and that therefore pays the memory penalty for storing proxy objects, diffs, and twins of
pages. These overheads sum up significantly so that LOTS cannot support large address
spaces, especially when large numbers of small objects are used. LVM uses thread
migration and has no per-object DSM overheads. Finally, LVM manages standard Java
code and migrates threads through a cluster automatically. LOTS requires manually
inserted acquire and release statements to control data consistency and to use the C++
library constructs provided.

References

1. http://www.oberhumer.com/opensource/lzo/
2. Brezany, P., Choudhary, A.N., Dang, M.: Parallelization of irregular out-of-core applications

for distributed-memory systems. In: Proc. of HPCN Europe 1997, Amsterdam, pp. 811–820
(April 1997)

3. Brown, A.D., Mowry, T.C., Krieger, O.: Compiler-based I/O prefetching for out-of-core ap-
plications. ACM Trans. Comput. Syst. 19(2), 111–170 (2001)

4. Cheun, B.W.L., Wang, C.L., Lau, F.C.M.: LOTS: A Software DSM Supporting Large Object
Space. In: Proc. Cluster 2004, San Diego, CA, pp. 225–234 (September 2004)

5. Chihaia, I., Gross, T.: An analytical model for software-only main memory compression. In:
WMPI 2004: Proc. of the 3rd workshop on Memory performance issues, Munich, Germany,
pp. 107–113 (June 2004)

6. Chilimbi, T.M., Hill, M.D., Larus, J.R.: Cache-conscious structure layout. In: Proc. of the
ACM SIGPLAN 1999 Conf. on Programming Language Design and Implementation, At-
lanta, GA, pp. 1–12 (May 1999)

7. Choi, J.D., Gupta, M., Serrano, M., Sreedhar, V.C., Midkiff, S.: Escape Analysis For Java.
In: Proc. of the 1999 ACM SIGPLAN Conf. on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), Denver, CO, pp. 1–19 (November 1999)

8. Cortes, T., Becerra, Y., Cervera, R.: Swap compression: resurrecting old ideas. Software,
Practice and Experience 30(5), 567–587 (2000)

9. Feeley, M.J., Morgan, W.E., Pighin, E.P., Karlin, A.R., Levy, H.M., Thekkath, C.A.: Im-
plementing global memory management in a workstation cluster. SIGOPS Oper. Syst.
Rev. 29(5), 201–212 (1995)

10. Finney, S., Ganchev, K., Klock, M., Newhall, T., Spiegel, M.: The NSWAP module for net-
work swap. Journal of Computing Sciences in Colleges 18(5), 274–275 (2003)

http://www.oberhumer.com/opensource/lzo/

Supporting Huge Address Spaces in a Virtual Machine for Java on a Cluster 201

11. Hertz, M., Feng, Y., Berger, E.D.: Garbage collection without paging. In: Proc. of the 2005
ACM SIGPLAN Conf. on Programming Language Design and Implementation (PLDI 2005),
Chicago, IL, pp. 143–153 (2005)

12. Lattner, C., Adve, V.: LLVM: A Compilation Framework for Lifelong Program Analysis
& Transformation. In: Proc. of the 2004 Intl. Symp. on Code Generation and Optimization
(CGO 2004), Palo Alto, CA, pp. 75–85 (March 2004)

13. Lee, K., Fang, X., Midkiff, S.P.: Practical escape analyses: how good are they? In: Proc.
of the 3rd Int’l Conf. on Virtual Execution Environments (VEE 2007), San Diego, CA, pp.
180–190 (2007)

14. Protic, J., Tomasevic, M., Milutinovic, V.: A survey of distributed shared memory systems.
In: Proc. 28th Hawaii Intl. Conf. on System Sciences (HICSS 1995), pp. 74–84 (January
1995)

15. Rizzo, L.: A very fast algorithm for RAM compression. SIGOPS Oper. Syst. Rev. 31(2),
36–45 (1997)

16. Ryne, R., Habib, S., Qiang, J., Ko, K., Li, Z., McCandless, B., Mi, W., Ng, C., Saparov,
M., Srinivas, V., Sun, Y., Zhan, X., Decyk, V., Golub, G.: The US DOE Grand Challenge in
computational accelerator physics. In: Proc. Linear Accelerator Conference (LINAC 1998),
Chicago, p. 603 (August 1998)

17. Taura, K., Yonezawa, A.: An Effective Garbage Collection Strategy for Parallel Programming
Languages on Large Scale Distributed-Memory Machines. In: 6th Symp. on Principles and
Practice of Parallel Programming (PPoPP), Las Vegas, NV, pp. 18–21 (June 1997)

18. Veldema, R., Hofman, R.F.H., Bhoedjang, R.A.F., Jacobs, C.J.H., Bal, H.E.: Source-level
global optimizations for fine-grain distributed shared memory systems. In: 8th Symp. on
Principles and Practices of Parallel Programming (PPoPP), Snowbird, Utah, pp. 83–92 (June
2001)

19. Whaley, J., Rinard, M.: Compositional Pointer And Escape Analysis For Java Programs.
In: Proc. of the 1999 ACM SIGPLAN Conf. on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), Denver, CO, pp. 187–206 (November 1999)

Modeling Relations between Inputs and Dynamic
Behavior for General Programs

Xipeng Shen and Feng Mao

Computer Science Department
The College of William and Mary, Williamsburg, VA, USA

{xshen,fmao}@cs.wm.edu

Abstract. Program dynamic optimization, for being adaptive to runtime behav-
ior changes, has become increasingly important for both performance and energy
savings. However, most runtime optimizations often suffer from the lack of a
global picture of a program’s execution, and cannot afford sophisticated program
analysis. On the other hand, offline profiling techniques overcome both obstacles
but are oblivious to the effects of program inputs.

An approach in the between is to offline find the connections between program
inputs and runtime behavior, and then apply the knowledge to runtime optimiza-
tions. Although it potentially gets the best of both worlds, it faces a fundamental
challenge: How to discover and model the relations between inputs and runtime
behavior for general programs.

This work tackles the problem from three aspects. It proposes an extensi-
ble input characterization language to resolve the complexity of program inputs.
A translator to the langauage helps automatically convert a raw input into an
attribute vector, which is then refined by a feature selector to remove redundan-
cies and noises. Finally, statistical learning builds input-behavior models. Ex-
periments on IBM XL compilers show accurate prediction of detailed execution
profiles, helping profile-directed compilation outperform both static and offline
profiling-based compilations, demonstrating the potential of the technique for
continuous program optimizations.

1 Introduction

Program optimizations have evolved from static compilation to dynamic transforma-
tion, reflected by the increasingly growing interest in Just-In-Time compilers, contin-
uous optimization techniques, and runtime compiling systems [3, 4, 7, 13, 14, 21].
During a program’s execution, dynamic systems transform its code and data to better
match the runtime behavior.

Most dynamic systems make optimization decisions upon the information collected
through runtime sampling. The low tolerance of overhead makes it difficult if not im-
possible to capitalize on sophisticated program analysis or to discover important but
costly behavior patterns (e.g. data access patterns). Moreover, most dynamic systems
are reactive: they make decisions upon the just observed execution. An underlying as-
sumption is that the program will behave the same as how it behaved. This assumption is
fragile for program phases and runtime environment changes (e.g. garbage collections
and interferences from other programs), and may mislead the optimizations.

V. Adve, M.J. Garzarán, and P. Petersen (Eds.): LCPC 2007, LNCS 5234, pp. 202–216, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Modeling Relations between Inputs and Dynamic Behavior for General Programs 203

On the other hand, profiling-directed compilation optimizes a program based on
some profiling runs. Being an offline technique, the compilation can afford more analy-
sis overhead. However, it is oblivious to the changes in program inputs, often resulting
in inferior optimization decisions since the real runs of a program may differ substan-
tially from the profiling runs due to the difference of their inputs [1].

A tradeoff in the between is to offline build an input-behavior model that can con-
nect a program’s inputs with its runtime behavior, and at the beginning of a real run, to
predict the runtime behavior by plugging the new input into the input-behavior model,
and then to optimize the program accordingly. The technique combines the strengths
of the both worlds: By moving behavior data collection and analysis offline, it is more
affordable to sophisticated behavior analysis than pure runtime techniques; by model-
ing input-behavior relations, it handles input-sensitive behavior better than profiling-
directed compilations.

In order to apply input-behavior models to general programs, we have to address
two issues: How to deal with the complexity of program inputs, and how to build the
connections between inputs and runtime behaviors. Although there has been some work
in utilizing program inputs for specific optimization decisions, e.g. the selection of al-
gorithms for sequential sorting by Li et al. [16] and for parallel sorting and matrix
multiplication algorithms by Thomas et al. [20], we are not aware of any systematic
explorations in solving these two issues for general programs.

In this work, we develop three techniques to build input-behavior models. The first
is an extensible input characterization language (XICL) for the formal expression of
program inputs. The inputs to general programs can be as simple as an integer or as
complex as an entire program with many options (e.g. inputs to a compiler). Further-
more, sometimes what matters to runtime behavior is the hidden attributes instead of
literal value of an input. For instance, it is the size or content rather than the name of a
file that determines the behavior of a file-compression. XICL is a mini-language for pro-
grammers to formally describe the format of program inputs and express a superset of
the critical input attributes. After a programmer builds an input specification for a pro-
gram using XICL, an interpretor can automatically translate any input of the program
into an input vector with necessary attribute values. XICL makes input characterization
tractable for general programs.

The second technique is input feature selection. From the input vector generated by
XICL translator, this step finds the elements in the vector that are critical to the run-
time behavior of interest. One input argument can have many attributes; some may be
remotely relevant to the behavior, and some may strongly correlate with others. Feature
selection can save the collection of redundant information, improving the generality of
the constructed input-behavior model.

The third step is the construction of input-behavior models through statistical learn-
ing techniques. We explore various regression techniques and employ cross-validation
to alleviate the overfitting problem. This step also marks unpredictable behaviors so that
the runtime system can avoid poor predictions to those behaviors.

We apply the technique to 3 SPEC CINT2000 programs and a data mining program.
The input-behavior models predict their detailed profiles with 90-99% accuracy. On an
IBM Power4 machine, the predicted profiles help the IBM XLC compiler outperform

204 X. Shen and F. Mao

both static and pure offline profiling-based compilations. It demonstrates the potential
of the technique for continuous program optimizations.

In the rest of this paper, we present XICL in Section 3, feature selection in Section 4,
model construction in Section 5, and evaluation in Section 6. In Section 7, we discuss
the issues on training inputs and the ways to hide training process. Section 8 describes
related work, followed by a short summary.

2 Program Behavior Model

Program dynamic behaviors fall into two categories depending on whether they are
hardware-related or not. The goal of this work is to develop a technique for system-
atic detection and prediction of the effects of inputs on program behavior. Therefore,
we concentrate on hardware-unrelated behaviors to avoid the distractions from other
factors. But the techniques can be extended to hardware-related behaviors as well.

Program code and inputs are the only factors determining hardware-unrelated behav-
iors. A general formula is B = g(P, I), where B is a hardware-unrelated behavior, P is
a program, I is the program’s input, and g represents the mapping function. In the study
of input effects for a given program, P is constant and I is the only changing factor;
thus we fold P into the mapping function and rewrite the formula as B = f(I), where
f is the mapping function from input I to behavior B.

Constructing an input-behavior model is to determine function f . With such a model,
plugging any input into f will generate the predicted behavior of the program’s execu-
tion on that input even without starting the real execution. One option to build the model
is through symbolic analysis on program code, but it faces the difficulty of pointer anal-
ysis, alias analysis, and uncertainty of runtime behavior.

Our approach is to formalize the task as a statistical learning problem, and use re-
gression analysis to solve it. By feeding a program with different inputs, I1, I2, . . . , IN ,
we observe the corresponding behavior of the program’s executions, represented by
B1, B2, . . . , BN . The input-behavior pairs, < Ii, Bi > (i = 1, 2, . . . , N), compose a
training set. We use linear regression and regression trees to derive the approximation
of f from the training set (Section 5.)

The complexity of program inputs is a major obstacle to the regression analysis.
Developing a scalable technique to convert raw inputs to a clean form with critical
input attributes contained is vital for input-behavior modeling.

3 Input Formal Expression

This section explains how XICL resolves input complexity. As illustrated by Figure 1,
a typical program command-line in Unix/Linux consists of four components: com-
mand, options, option arguments, and operands. The last three form the content of a
raw program input. In this work, we assume program inputs are given at the starting of
the program’s execution. Interactive programs can be addressed by incremental model
building, a topic left for our future study.

Raw program inputs are not suitable for input-behavior analysis for four reasons.
First, in many cases it is the attributes (e.g. the size of an input file) instead of the literal

Modeling Relations between Inputs and Dynamic Behavior for General Programs 205

Fig. 1. Command-line components

values (e.g. the name of an input file) of a command-line component that determine
a program’s behavior. But it is not always possible to automatically determine what a
raw input represents (e.g. a text file, a socket, or a graph) and what attributes should
be included. Furthermore, some attributes are domain-specific and require program-
mers’ knowledge. A typical example is the initial ordering of the input data for sorting
[16, 20].

Second, input-behavior analysis requires the separation of qualitative attributes from
quantitative ones. Unlike quantitative attributes (e.g. file size), qualitative attributes such
as file types are categorical. Regression analysis treats them differently. Directly from
raw inputs, it sometimes is difficult to separate them apart. For instance, the optimiza-
tion level of a compiler is a qualitative attribute, even though it is an integer number.

The third reason is the relations among input components. Two arguments in an input
can refer to the same option and one may overshadow the other. Raw inputs do not
contain such information. Furthermore, finding the corresponding components between
two raw inputs can be difficult if not knowing the format of the command line.

The last reason is that raw inputs don’t contain the default values of input options.
Although many programs allow a number of options, a command-line often has only
several of them explicitly indicated, leaving other options carrying their default values.
Without uncovering those values, most of the training data for the regression analysis
would be incomplete, resulting in poor accuracy.

All of these suggest the necessity for a scheme which can deal with the complexity
and convert raw inputs to a cleaner form with important input attributes contained;
XICL is our solution.

3.1 Extensible Input Characterization Language (XICL)

XICL is a mini-language for programmers to formally describe the format and the po-
tentially important attributes of a program’s inputs. In order to enable the automatic
translation of raw inputs to a well-structured format, the programmer of an application
need write an input specification using XICL. The specification describes all the options
and operands accepted by the program, in a format that a XICL translator can use to
determine the role of each component in an arbitrary legal command-line and conse-
quently convert the command-line to an input vector containing necessary attributes.

XICL Constructs. For the purpose of clarity, we will use the example contained in
Figure 2 to show the use of XICL. The program is to find the shortest routes in a given
graph. It allows three options: “-e”, “–echo”, and “-n”. The first two options are equiv-
alent to each other, determining whether intermediate results will be printed or not. The

206 X. Shen and F. Mao

SYNOPSIS: route [options] FILE
DESCRIPTION: A program to find the shortest path in a graph. FILE has node number at th
 beginning followed by the graph structure.
OPTIONS:
 -e, --echo: print intermediate results. It is off by default.
 -n NUM: find NUM shortest paths. Default is 1.

option{ name = -e:--echo; has_arg = N; type = BIN; attr = VAL; default = 0; }
option{ name = -n; has_arg = Y; type = NUM; attr = VAL; default = 1; }
operand{ position = 1:1; type = FILE; attr = FSTN1:mEDGS; }

ATTS * mEDGS (char * f) {
 n = readNumOfEdges(f);
 storeTo(n, patts->pAtt[0].value);
 patts->pAtt[0].isQuan = true;
 return patts;
}

Example command-line:
 route -n 3 graph1
where, graph1 contains 100 nodes
and 1000 edges.

Input vector produced by XICL translator:
 (0, 3, 100, 1000)

(a) Usage of program route

(b) Input specification in XICL. VAL and FSTN1 are predefined attributes, representing the va
an option and the first number in a file, while mEDGS is defined by a programmer as shown in

(c) An attribute-deriving procedure (d) An example input and the produced vector

Fig. 2. An example illustrating the use of XICL

last option determines the number of shortest paths to find. Figure 2 (b) and (c) contain
the input specification and an attribute-deriving procedure written by a programmer.

The primary constructs of XICL include two structures, respectively for the descrip-
tion of options and operands in a command-line, as shown in Figure 3.

The first element of the option construct contains the possible names for the option.
An option can have multiple names equivalent to each other, which is common in the
Linux programs that conform POSIX conventions and have GNU long options. For
example, the first entry in Figure 2 (b) shows that “-e” and “–echo” are equivalent
option names. Options with equivalent names correspond to the same set of elements
in the input vector to be produced. The other elements of an option construct indicate
whether the option allows arguments, the predefined type of the option, the potentially
important attributes of the option, and the default value of the option.

The “position” element in an operand structure indicates that the specification of the
operand can be applied to all the operands in range [START, END] of the operand list in
the command-line. For instance, the third entry in Figure 2 (b) has “position” of “1:1”,
showing that the entry is applicable to the first operand, ’FILE’, in a command line. If
the “position” value is “1:3”, the first three operands in a command-line will use that
entry’s specification. Note, unlike equivalent option names, different operands, even if
having the same operand construct, correspond to different sets of elements in the input
vector to be produced.

Modeling Relations between Inputs and Dynamic Behavior for General Programs 207

option{
 name = NAME1:NAME2:...; // names of the option
 has_arg = N/Y; // has an argument or not
 type = TYPE; // type of the option
 attr = ATT1:ATT2:...; // potentially important attributes
 default = DEFAULT; // default value
}

operand{
 position = START:END; // legal positions of the operand
 type = TYPE; // type of the operand
 attr = ATT1:ATT2:...; // potentially important attributes
}

Fig. 3. Primary constructs in XICL

Two of the structure elements, “type” and “attr”, deserve more explanations. For eas-
ier use, we predefine five types for commonly used options and operands. Each contains
a group of predefined attributes that can be used for the value of “attr”. The five types
are BIN for binary values, NUM for numerical values, STR for strings, FILE for files,
and OTH for others. Totally they have 25 predefined attributes [17].

The value of “attr” includes a group of attributes that the programmer regards as im-
portant ones to an option. Besides the predefined attributes, XICL allows programmers
to write their own procedures to produce attributes for an option, providing the flexi-
bility for addressing special and difficult attributes. The name of the procedure can be
used in “attr” as part of the attributes of an option or operand. For example, the attribute
“mEDGS” used in the third entry in Figure 2 (b) is such an attribute, supported by a
function written by the programmer, “ATTS * mEDGS(char *f)” in Figure 2 (c) in or-
der to determine the number of edges in the input graph file. During the translation of
raw inputs, the translator will invoke the procedures to compute those attributes. In or-
der to do that, the returned value of the procedures should be in structure ATTS defined
as shown in Figure 4.

The ATTS structure allows a procedure to return a group of attributes, the value
of each stored in a buffer. A boolean flag, “isQuan”, indicates whether the value is
quantitative or qualitative. Quantitative values are stored as floating-point type in the
buffer.

XICL Translator and Input Vector. The XICL translator converts an arbitrary
command-line into a vector containing the attributes of input components. Its input in-
cludes a command-line, the input specification of a program, the XICL library, and the
library supporting programmer-defined attributes. It parses the command-line in light
of the input specification and generates an input vector, whose format is illustrated in
Figure 2 (d). Each element in the input vector is an attribute value. The vector length
equals the total number of all options plus the attributes of the operands that appear
in the command-line. Operands’ attribute values always reside at the end of the input
vector.

208 X. Shen and F. Mao

// structure of a single attribute
typedef struct ATT_{
 bool isQuan; // a quantitative or qualitative value
 char * value; // the attribute value
 }ATT;

// structure of a set of attributes
typedef struct ATTS_{
 ATT* pAtt; // pointer of an ATT array
 int n; // the number of attributes
 }ATTS;

Fig. 4. Structures for programmer-defined attributes, used in attribute-deriving procedures in
XICL description of program inputs

In the realm of software testing, there are some explorations on extracting program
interfaces [8, 9, 12]. The key difference from XICL is that their main goal is to maxi-
mize the coverage of the program and they don’t incorporate input attributes that deter-
mine program performance.

4 Feature Selection

The input vectors generated from the XICL translator tend to contain some redundan-
cies. Since programmers are often not exactly sure what attributes are important, they
tend to include anything potentially relevant. Moreover, relevant attributes may have
strong correlation with each other (e.g. the number of words and the number of bytes in
a file). These redundancies not only cause the overhead of collecting useless attributes,
but more importantly, result in large regression coefficients in input-behavior models
and hurt prediction accuracy.

Feature selection is to select the important attributes from preliminary input vec-
tors. From the perspective of statistical learning, feature selection increases the relative
coverage of the training data.

Suppose N is the dimensionality of input vectors, li and ui are the lower and upper
bounds of the possible input space in ith dimension, and along that dimension

−→
li and

−→ui are the lower and upper bound of the area that is covered by the training data. (For
simplify, here we assume a continuous range in each dimension.) The upper bound
of the covered area is thus a hypercubic with each side spanning from

−→
li to −→ui (i =

1, 2, . . . , N). It is embedded in the N-dimensional possible space defined by li and ui.
For an input vector whose corresponding point in the space falls out of the hypercubic,
it is often difficult to predict the program’s behavior on that input.

As the dimensionality N increases, the required number of training data increases
exponentially in order to make the hypercubic cover a certain portion of the possible
space. That is well known as the curse of dimensionality in statistical learning [10].
Feature selection reduces the dimensionality of input vectors, and hence increases the
relative portion of the covered area.

Modeling Relations between Inputs and Dynamic Behavior for General Programs 209

We explore two methods for feature selection: principle component analysis (PCA),
and selection upon T-test. PCA finds the directions in which the input data have the
largest variances [10]. It converts the original input space to an orthogonal space (PCA
space) and ranks the axes of the new space in terms of the data variances in their direc-
tions. The directions are called principle components. As PCA space is an orthogonal
space, principle components have no correlations with each other. One can discard less-
important components to reduce the effect of noises. Using data that are projected to
PCA space has been shown beneficial for various regression and classification tasks.
On the other hand, because every principle component is the combination of all input
attributes, PCA does not eliminate the need for collecting any input attribute.

The second technique used in our exploration is based on T-test [10]. The T-statistic
tests the hypothesis that the regression coefficient of an attribute is zero when the other
attributes are in the model. T-test produces a P-value, observed significance level, for
each attribute. Non-significant P-value of an attribute indicates that it does not have
predictive capability in the presence of other attributes. We iteratively remove the non-
significant attributes. In every iteration, no more than one attribute can be removed
because an attribute that does not have predictive capability in the presence of the other
attributes may have predictive capability when some of those are removed from the
model.

The T-test method works in the original input space. Therefore, unlike the PCA
method, it can remove non-important attributes and thus save the collections of re-
dundant features. However, since the original input space is usually not orthogonal,
it suffers from the correlations between input attributes. We explored both methods and
selected T-test for its comparable effectiveness and the advantage in feature reduction.

Through feature selection, the input vectors are converted to refined vectors con-
taining only the input information critical to the behavior of interest. Along with the
behavior data collected during offline profiling, they compose the training data to the
input-behavior model builder.

5 Model Building

Model building is the final step to determine the mapping function from program inputs
to runtime behavior. We use linear regression and regression trees to uncover the linear
and nonlinear relations between them.

Suppose f is the function mapping input
−→
I to a runtime behavior B for a given

program. Given training data set <
−→
Ii , Bi > (i = 1, 2, . . . , N), the goal of typical

regression analysis is to find the approximation of function f , represented by f̂ , such
that the sum of error square,

∑N
i=1(Bi − f̂(−→Ii))2, is minimized.

Linear regression assumes that function f(−→X) is linear to the inputs. The problem
is to determine the order and the coefficients of the function so that they minimize the
sum of error square.

Nonlinear relations cannot be approximated well by linear regression. A branch in
the code of gzip, for example, is not taken at all if the input size is larger than 90M; for
smaller inputs, the number of times it is taken increases linearly to the input size. The
cycles in Figure 5 show the observed behavior, that is, the number of times that branch

210 X. Shen and F. Mao

0 1 2 3 4 5

x 10
5

−10

−5

0

5

10

15

20

25

30

35

40

Input data size

A
cc

es
s

F
re

qu
en

cy

training samples
linear regression
regression tree

Fig. 5. Regress trees uncover nonlinear relationship between inputs and behavior

is taken for different size of inputs. We use regression tree to deal with the nonlinear
relations.

Regression tree splits input space by applying information theory on the training
data. By default, a regression tree uses the mean value in a leaf node as the prediction
for any input that falls into that node. We build a linear model in each leaf node using
linear regression to improve the accuracy. Figure 5 shows the fitting result from both
linear regression and regression tree methods for the gzip example.

6 Evaluation

On an IBM Power4 machine, we collect detailed execution profiles through the profile-
directed feedback (PDF) functionality in IBM XL compilers. The profile contains the
number of times the basic blocks in a program are accessed during an execution, which
are the behaviors to be predicted in the experiments. The reason for choosing block
frequency is that its effect on program optimization (e.g. function inlining, block lay-
out, loop transformation) is so important that IBM XL compilers mainly rely on it for
profile-directed optimization.

6.1 Methodology

Our experiments use an IBM eServer pSeries 690 Turbo machine equipped with 1.7GHz
Power4 processors. It runs AIX 5.1 with XL compiler version 6. Table 1 shows the
benchmarks we used for our experiments. All programs are from SPEC CPU integer
benchmarks except kmlocal, which is a K-means clustering program from University
of Maryland [11]. Including kmlocal is for performance comparison with commercial
compilers since those compilations often have already been tuned toward SPEC CPU
benchmarks.

The third column of Table 1 shows the numbers of lines of source code in each
benchmark. The next three columns show the number of inputs we used, the number
of behaviors (block frequencies), and the difference of behaviors induced by those in-
puts. The 23 to 114 times difference indicates the high sensitivity of those programs on

Modeling Relations between Inputs and Dynamic Behavior for General Programs 211

Table 1. Benchmarks

benchmarks description lines #inputs #behaviors behavior #raw #selected
changes features features

gzip spec2000 8614 50 1775 27X 18 2
mcf spec2000 2412 250 289 114X 4 2
parser spec2000 11391 40 4416 39X 7 1
kmlocal data clustering 6617 50 3333 23X 12 1

their inputs. The last two columns contain the number of raw features provided by a
programmer and the features selected by our technique. The selected features include
the size and the type of the input file for gzip, the first two numbers in the input file for
mcf (which correspond to the numbers of timetabled and dead-head trips), the number
of lines in the input file for parser, and the number of points for kmlocal.

6.2 Accuracy of Behavior Prediction

IBM XL compilers have the functionality for profiling-directed feedback (PDF) com-
pilation. The compilation includes three steps. It first instruments the program and let
users run the executable on one or more training inputs to generate some profiles. A pro-
file contains the number of times each basic block has been accessed in an execution.
Multiple blocks can point to a single number in the profile if the compiler determines
that they always have the same number of accesses. The compiler then recompiles the
program using the profile(s). This is a typical offline profiling optimization technique.

In our experiments, we treat each frequency number in a profile as a program be-
havior. The goal is to predict the profile of an execution on a new input without even
starting the execution.

Figure 6 shows the prediction accuracy. We use leave-one-out method to evaluate
the prediction accuracy. Every time the method takes one data item out of the data set
and uses the other data for model training. Then it measures the prediction error for the
picked data. The process operates on every data and the average of the errors is taken
as the estimation of the prediction error of the constructed model [10]. The formula for
accuracy calculation is shown below, with f and f̂ for the real and predicted behavior
values. Using max in the divider is to normalize the accuracy to 0 to 1.

accuracy = 1 − |f̂ − f |
max(f, f̂)

Benchmarks gzip and kmlocal have less than 1% error for all behaviors, parser has
4% median error, and mcf has about 10% median error. The relatively larger error of
mcf is due to its two quantitative features, requiring more training data than others.

We obtain the results using a combination of linear regression and regression trees.
The model builder automatically chooses the better model for each behavior using 8-
fold cross validation [10]. The idea is to take one eighth training data as validation data
to measure the models trained by the remaining data.

212 X. Shen and F. Mao

gzip kmlocal mcf parser
0

20

40

60

80

100

A
cc

.
(%

)

Benchmarks

Fig. 6. Boxplot of the prediction accuracy for XL profiles. A box contains the median 50% results
and the inside horizontal line shows the median value, with two outside horizontal lines for the
maximum and minimum values.

gzip kmlocal mcf parser
0

0.2

0.4

0.6

0.8

1

1.2

Benchmarks

N
or

m
al

iz
ed

 E
rr

or

linear regression
with regression trees

Fig. 7. Error reduction by regression trees

Regression trees improve prediction accuracy significantly. Figure 7 shows the pre-
diction errors from pure linear regression methods and the above combined method. For
legibility, we normalize the errors by those of pure linear regressions. Except kmlocal,
all the other benchmarks show 33% to 68% error reduction. Program kmlocal does not
need regression trees since it has only linear relations.

6.3 Effects on Optimizations

As a demonstration to the effects of the prediction errors on program optimization, we
feed the predicted profiles to XL compiler and compare its PDF compilation results
with those from static compilation and offline profile-directed compilation, which uses
the average profile of training runs. Figure 8 shows the comparison on kmlocal. We
use the result from the default level-2 optimization as the baseline. The level-2 PDF
compilation using the predicted profiles produces an executable that is 10% faster. It is
remarkable that the compilation, although using just “-O2” optimization level, beats the
highest level compilation “-O5” by 5% and the offline compilation by 3.8%. (We didn’t
use PDF on level 5 because on that level the XL compiler failed in producing profiles
for some programs for unclear reasons.) For the three SPEC benchmarks, we didn’t see

Modeling Relations between Inputs and Dynamic Behavior for General Programs 213

0.94

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

-O2 -O5 PDF -O2 pPDF -O2

Optimizations

S
p
e
e
d
u
p

Fig. 8. Speedup of kmlocal with different optimizations: “-O2” for the level-2 optimization, “-
O5” for the highest level optimization, “PDF-O2” for the “-O2” compilation directed by average
profiles, “pPDF-O2” for the “-O2” compilation directed by predicted profiles

significant benefits from both PDF compilations. A possible reason reason is that the
commercial compiler has been highly tuned to those benchmarks.

It is worth to note a desirable feature of the prediction model. During offline training,
the model builder can mark the behaviors that are not predictable and avoid predicting
them during runtime, which enables the avoidance of negative effects of poor predic-
tions on optimizations.

We want to emphasize that the purpose of the experiment is to demonstrate the poten-
tial benefits input-behavior models can bring to program optimization. The experiment
requires one binary version per input, which is obviously impractical. Although one
may classify inputs and generate one version per class, a more proper use of the tech-
nique is in continuous (or runtime) program optimization, where, code optimizations
occur during a program’s execution and the input-behavior models can therefor provide
useful guidance.

7 Training Inputs

This section discusses the effect of training inputs, the way to obtain training inputs,
and how to hide the training process.

Training data determines the coverage of a model. The input space of a program can
have many dimensions. However, typical uses of the program often form just a small
subspace. For example, despite that gzip 1.3.5 has 16 options, users often use few if any
of them when compressing a file. This property along with feature selection techniques
makes input-behavior modeling tractable. Focusing on typical uses of a program, the
technique can avoid poor prediction by simply not predicting for inputs falling outside
the covered area.

The distribution of training input in the covered area is important for model building.
We conduct a comparison experiment on gzip by using two training sets with the size
of 20 files distributed from 0 to 500MB respectively in a uniform and exponential dis-
tribution. All predictions using linear inputs have accuracy greater than 97.5%, while
one thirds of the predictions using exponential inputs have errors larger than 10%. When

214 X. Shen and F. Mao

collecting training data, it is therefore important to make training inputs well distributed
in the covered area.

In our experiments, we use a semi-automatic way to generate training inputs. For
each program, we create an input-generator based on the understanding of the program.
For instance, for gzip, we pack a number of different types of files into a tar file and
then use an input generator to randomly pick some parts of the file to compose training
files of different sizes.

Collecting training inputs can be tedious. Much research is investigating automatic
input generation in software engineering area [8, 9, 12]. Although most of the gener-
ators are designed for correctness testing, they are potentially usable for optimization
purposes. Another possible solution is to implicitly collect inputs from users’ real uses
of an application. That is particularly useful for continuous optimizations where a pro-
gram has the opportunity to be continuously optimized after its release. Training takes
time. One way to hide the training process from users is to let computer systems start
the training process when the machine is idle.

8 Related Work

Prior research in program optimizations falls into four categories in light of the treat-
ment to program inputs. Static compilation either limits itself to the properties holding
for any input, or uses ad-hoc estimations for dynamic behavior. For example, a loop is
considered ten times more frequently accessed than others [5]. Offline profiling-based
methods assume that the profiling runs are the representatives of the real runs and sim-
ply make optimization decisions upon those several runs [2]. Neither of them captures
dynamic behavior for programs that are input-sensitive. Run-time methods make deci-
sions by monitoring program behavior and trying different optimizations [3, 4, 7, 13,
14, 21]. Although they observe the actual behavior on an input directly, those meth-
ods suffer from run-time overhead and hence cannot afford sophisticated analyses. The
last class of methods build models by applying machine learning techniques to offline
training runs and conduct run-time prediction by plugging in the input characteristics
of a real run [16, 20]. Compared to runtime techniques, they move most analysis to of-
fline without sacrificing much confidence in the actual program behavior. However, the
previous explorations are limited to several scientific computing kernels, including ma-
trix multiplication and sorting. This work is an exploration to general programs. Ding
et al. [6, 23] studied locality prediction across inputs but without dealing with input
complexity and feature selection. Shen et al. [19] studied across-input phase sequence
prediction based on locality phase analysis [18], but didn’t resolve the complexity of
inputs either. Berube and Amaral explore the use of Machine Learning techniques in
benchmark design for profile-directed optimization [1], but didn’t explore the input-
behavior models in program optimizations.

For input characterization, some relevant work exists in the realm of software testing,
the explorations in test data generation [8, 9, 12, 22]. Most of those techniques focus
on the interface to program modules such as procedures or classes, rather than the input
to the whole program. Behavior interface specification languages, like Java Modeling
Language (JML), enable the specification of the constraints or contract between a class

Modeling Relations between Inputs and Dynamic Behavior for General Programs 215

and its clients [15]. These constraints can be regarded as a kind of input attributes, but
they are for correctness and don’t capture the factors affecting program performance.

To our knowledge, this work is the first systematic study in tackling the complex-
ity of raw inputs and providing a framework to consider general input attributes for
performance optimizations.

9 Conclusion

This work develops a set of technique to uncover the relations between inputs and dy-
namic behavior for general programs. It proposes XICL to handle the complexity of
program inputs and incorporate the critical input attributes into a formal format. It uses
PCA and T-test to remove the redundancies and correlations inside the original input
attribute set. It builds the statistical model through linear regression and regression tree
methods. The experiments demonstrate the high prediction accuracy of detailed execu-
tion profiles for programs with complex control flows. The technique bridges program
inputs and dynamic behavior, opening the opportunities for using input-behavior mod-
els in continuous program optimizations.

References

1. Berube, P., Amaral, J.N.: Benchmark design for robust profile-directed optimization. In:
Standard Performance Evaluation Corporation (SPEC) Workshop (2007)

2. Chang, P.P., Mahlke, S.A., Chen, W.Y., Hwu, W.: Profile-guided automatic inline expansion
for c programs. Software Practice and Experience 22(5) (1992)

3. Chen, W., Bhansali, S., Chilimbi, T.M., Gao, X., Chuang, W.: Profile-guided proactive
garbage collection for locality optimization. In: Proceedings of ACM SIGPLAN Conference
on Programming Languages Design and Implementation (2006)

4. Childers, B., Davidson, J., Soffa, M.L.: Continuous compilation: A new approach to aggres-
sive and adaptive code transformation. In: Proceedings of 2003 International Parallel and
Distribute Processing Symposium (IPDPS) (2003)

5. Dean, J., Chambers, C.: Towards better inlining decisions using inlining trials. In: Proceed-
ings of ACM Conference on Lisp and Functional Programming (1994)

6. Ding, C., Zhong, Y.: Predicting whole-program locality with reuse distance analysis. In:
Proceedings of ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, San Diego, CA (June 2003)

7. Diniz, P., Rinard, M.: Dynamic feedback: an effective technique for adaptive computing. In:
Proceedings of ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, Las Vegas (May 1997)

8. Edvardsson, J.: A survey on automatic test data generation. In: Proceedings of the 2nd Con-
ference on Computer Science and Engineering, pp. 21–28 (October 1999)

9. Godefroid, P., Klarlund, N., Sen, K.: Dart: Directed automated random testing. In: Proceed-
ings of the Conference on Programming Language Design and Implementation (2005)

10. Hastie, T., Tibshirani, R., Friedman, J.: The elements of statistical learning. Springer, Hei-
delberg (2001)

11. Kanungo, T., Mount, D.M., Netanyahu, N., Piatko, C., Silverman, R., Wu, A.Y.: A local
search approximation algorithm for k-means clustering. In: Proceedings of the 18th ACM
Symposium on Computational Geometry (2002),
http://www.cs.umd.edu/users/mount/Projects/KMeans/

http://www.cs.umd.edu/users/mount/Projects/KMeans/

216 X. Shen and F. Mao

12. King, J.C.: Symbolic execution and program testing. Communications of the ACM 19(7)
(1976)

13. Kistler, T.P., Franz, M.: Continuous program optimization: a case study. ACM Transactions
on Programming Languages and Systems 25(4), 500–548 (2003)

14. Lau, J., Arnold, M., Hind, M., Calder, B.: Online performance auditing: Using hot optimiza-
tions without getting burned. In: Proceedings of the SIGPLAN Conference on Programming
Language Design and Implementation (2006)

15. Leavens, G., Baker, A., Ruby, C.: Preliminary design of JML: A behavioral interface speci-
fication language for java. ACM SIGSOFT Software Engineering Notes 31(3), 1–38 (2006)

16. Li, X., Garzaran, M.J., Padua, D.: A dynamically tuned sorting library. In: Proceedings of
the International Symposium on Code Generation and Optimization (2004)

17. Shen, X., Mao, F.: Modeling relations between inputs and dynamic behavior for general
programs. Technical Report WM-CS-2007-07, Computer Science Dept., College of William
and Mary (July 2007)

18. Shen, X., Zhong, Y., Ding, C.: Locality phase prediction. In: Proceedings of the Eleventh In-
ternational Conference on Architect ural Support for Programming Languages and Operating
Systems (ASPLOS XI), Boston, MA (2004)

19. Shen, X., Zhong, Y., Ding, C.: Phase-based miss rate prediction. In: Proceedings of the In-
ternational Workshop on Languages and Compilers for Parallel Computing, West Lafayette,
IN (September 2004)

20. Thomas, N., Tanase, G., Tkachyshyn, O., Perdue, J.: A framework for adaptive algorithm
selection in stapl. In: Proceedings of ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming (2005)

21. Voss, M., Eigenmann, R.: High-level adaptive program optimization with ADAPT. In: Pro-
ceedings of ACM Symposium on Principles and Practice of Parallel Programming, Snow-
bird, Utah (June 2001)

22. Whaley, J., Martin, M.C., Lam, M.S.: Automatic extraction of object-oriented component
interfaces. In: Proceedings of International Symposium on Software Testing and Analysis
(2002)

23. Zhong, Y., Dropsho, S.G., Shen, X., Studer, A., Ding, C.: Miss rate prediction across program
inputs and cache configurations. IEEE Transactions on Computers 56(3) (2007)

Evaluation of RDMA Opportunities in an
Object-Oriented DSM

Ronald Veldema and Michael Philippsen

University of Erlangen-Nuremberg, Computer Science Department 2,
Martensstr. 3, 91058 Erlangen, Germany

{veldema,philippsen}@cs.fau.de

Abstract. Remote Direct Memory Access (RDMA) is a technology to update a
remote machine’s memory without intervention at the receiver side. We evaluate
where RDMA can be usefully applied and where it is a loss in Object-Oriented
DSM systems. RDMA is difficult to use in modern OO-DSMs due to their support
for large address spaces, advanced protocols, and heterogeneity. First, a commu-
nication pattern that is based on objects reduces the applicability of bulk RDMA.
Second, large address spaces (meaning far larger than that of a single machine)
and large numbers of machines require an address space translation scheme to
map an object at different addresses on different machines. Finally, RDMA usage
is hard since without polling (which would require source code modifications),
incoming RDMA messages are hard to notice on time.

Our results show that even with RDMA, update protocols are slower than
invalidation protocols. But RDMA can be successfully applied to fetching of ob-
jects in an invalidation protocol and improves performance by 20.6%.

1 Introduction

A Software Distributed Shared Memory (S-DSM) system allows for easy distributed
programming by making a cluster seem like a single, big computer. The current prolif-
erence of Java programmers increases the importance of Java DSMs.

Recent cluster interconnects can directly and efficiently read/write another machine’s
memory by means of explicitly programmed Remote Direct Memory Access (RDMA).
Note that an RDMA operation is performed without cooperation from the receiving
machine, except for the initial setup of RDMA-able memory spaces. With Infiniband,
RDMA can be up to 6-10 times faster than send/receive based primitives. For exam-
ple, using 3Ghz CPUs, a 1 byte RDMA costs about 2 μs whereas a normal message
send (including protocol processing to deliver the packet to the application layer) takes
17 μs. It therefore seems promising to employ RDMA in DSM systems to implement
memory consistency protocols. However, due to a number of restrictions and the lack of
message receipt notification, protocols can become more complex, so that performance
is reduced.

Java DSMs must implement the Java memory model using some memory consis-
tency protocol. There are two basic memory consistency protocols: invalidation proto-
cols and update protocols. In an invalidation protocol, a machine asks a ’data-owning’
machine (called the home-node), to send over the requested data (fetch), and caches it

V. Adve, M.J. Garzarán, and P. Petersen (Eds.): LCPC 2007, LNCS 5234, pp. 217–231, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

218 R. Veldema and M. Philippsen

locally until it is invalidated (and sent back, i.e., flushed). In an update protocol, a ma-
chine broadcasts its changes to all (accessing) machines so that a ’write’ to some data
causes communication while a read of some data will not cause communication. To re-
duce communication load, changes can be aggregated for delayed bulk broadcasts till a
later synchronization action. Update protocols can be implemented solely by means of
RDMA, i.e., without any explicit messaging.

Below, this paper investigates the RDMA opportunities in an invalidation protocol
and in two update protocol alternatives.

Our prototype implementation uses Jackal [9,10], a Java based S-DSM system, be-
cause of its support for plugable DSM protocols and its simple mark-and-sweep Garbage
Collector (GC) that makes RDMA-based DSMs easier to implement (as objects do not
move during a program’s runtime). Jackal compiles a Java program directly to an op-
timized native executable. We currently have code generators for x86, AMD64, Pow-
erPC, and IA64. Any multi-threaded Java program can as such run without change on a
cluster of workstations. Where some DSM systems transfer MMU pages over the net-
work (fixed 1 to 4 Kbyte chunks of memory), Jackal’s granularity is a region: a single
Java object or a 64 KByte chunk of an array. This automatic array chunking reduces the
possibility of false sharing.

Finally, Jackal is very flexible. It supports a very large virtual address space where
each machine adds its memory to the global pool without limits on the number of par-
ticipating machines. This large address space is one of the main obstacles for RDMA
use. To build this large address space, it is necessary to translate object references be-
tween machines. This address translation scheme works as follows. At object allocation,
each object is assigned a cluster-wide unique Global Object Reference (GOR). When
sending an object reference to another machine, that objects’s GOR is sent instead,
combined with a type-descriptor structure of the object pointed to. When the target ma-
chine receives the GOR, it consults a hash table to see where the object’s local copy is
allocated. If no local copy has been allocated yet at that machine, the type-descriptor is
used to locate the local machine’s meta-class instance for that object. That meta-class
contains enough information (type, size in memory, etc.) to allocate the local copy and
store the new pointer in the table. Afterwards the local copy’s address is used.

This scheme therefore has the following characteristics: copies of objects at different
machines have different addresses, each reference sent over the network needs to be
translated, and finally, copies are allocated lazily so that we cannot be sure that for each
object a local copy always exists before sending references to other machines. These
features make an RDMA based implementation harder.

2 Related Work

Both invalidation and update protocols exist in many variations and can operate under
different memory models. For an (older) overview of DSM systems see [8].

To our knowledge, only few attempts have been made to use RDMA in a DSM
protocol. In each of [7,2,5] a page oriented Home-based Lazy Release Consistency
protocol (HLRC) is optimized with RDMA. In [7] multiple page diffs (the changes
made by the local processor) are sent to their home via RDMA. In [2] diffs are applied

Evaluation of RDMA Opportunities in an Object-Oriented DSM 219

by RDMA to the home-node copy. Our system, however, is not page based but object
based. Also, we examine the opportunities offered by RDMA for both invalidation and
update protocols. In [5] it is investigated how to allow multiple threads per process but
by using VIA style network interconnects. Our system can use multiple threads per
process as well, but uses different protocols to achieve this.

Other related works compare invalidation and update protocols (without RDMA us-
age) and program transformations to best utilize them. While the authors of [3] show
some performance gains for update protocols, we avoid their extensive manual source-
code transformations.

Munin [1] allows the programmer to choose from a time-out update protocol and a
number of lazy release protocols. Whereas Jackal allows the protocol to be specified per
object, in Munin this can be done per (global) variable. Munin’s global address space
is restricted. Both [3] and [1] do not use RDMA based protocol implementations and
hence might benefit from the RDMA versions presented here.

3 DSM Protocol Template

Java’s memory model prescribes that at the entry and at the exit of a synchronized
block, any changes to memory caches made by a thread must be ’published’ so that
other threads can pick up those changes. Besides this, synchronized blocks guarantee
mutual exclusion of threads. We implement the mutual exclusion part by sending a
message to the owner of the object of the synchronized block and then waiting for an
acknowledgement message. The owner will only send this acknowledgement if access
to the synchronized block is granted. While an object has a lock associated with it,
it is not eligible for home-migration (under invalidation protocols) to avoid having to
migrate locking state across machines when migrating an object. Object.wait(), timed-
wait(), notify(), and notifyAll() are implemented similarly.

Let us discuss the DSM protocol template first that works for both update and
invalidation protocols. For concrete invalidation and update protocols different imple-
mentations of the three operations: start read(Region r), start write(Region r), and pro-
cess cached regions() need to be selected. In our implementation, these functions test
some flag bits in a region and then pass control to the appropriate protocol handler for
that region so that protocols (invalidation or update) can be specified per region.

Our compiler inserts conditional calls to start read and start write into the code.
We call these ’access checks’. For example, the write access to the ’p’ field at line
4 of the source code on the left hand side of Fig. 1 causes the access check in lines
11–12 to be generated. A region is already locally available if the corresponding bit in
the thread’s write bitmap is set. Optimization passes in the compiler remove as many
superfluous access checks as possible, see [10]. If the region is not yet locally avail-
able, the start write and start read functions cause the DSM protocol to fetch a copy of
the object. After mapping the copy locally, a reference to the mapped region is added
to the thread’s cached list. On this list update and invalidation managed regions co-
exist. Whereas an invalidation protocol fetches a fresh copy of a region after every
single thread synchronization statement (as the use of ’synchronized’ causes data in-
validations), the update protocol fetches it only once whereafter it remains mapped.

220 R. Veldema and M. Philippsen

// Source:
1 class A {
2 int p;
3 synchronized void foo(int q) {
4 this.p = q;
5 }
6 }

7 // Instrumented with pseudocode:
8 void foo(int q) {
9 process cached regions();
10 lock(this);
11 if (! current thread.write bitmap[this])
12 start write(this);
13 this.p = q;
14 process cached regions();
15 unlock(this);
16 }

Fig. 1. DSM protocol template with object access and synchronization

At each lock/unlock, the cached list is traversed and each region is flushed (invalidation
protocol) or broadcast (update protocol). In case of an invalidation protocol, a diff of
a modified region is sent to the object’s home-node. If the region was not modified,
only a notification is sent that there is now one user less. These messages are used to
implement lazy flushing, home-migration, home-only states, etc. Jackal’s invalidation
protocol is a multiple-writer protocol with home-migration similar to [4]. It uses lazy-
flushing for cluster-wide read-only regions. In case of an update protocol, a diff is used
to update all other existing copies.

As said before, Jackal uses an address translation scheme. Whenever a reference to
an object is to be sent over the network, a GOR and some type-information is sent
instead which the receiver maps to the local copy causing copies of objects to have
different local addresses on different machines. In our prototype, the programmer can
select an update protocol per object/array via a simple Java API. This sets the object’s
’update protocol flag’ and performs an all-to-all communication to exchange the local
object addresses. This communication is required for RDMA protocols, as each ma-
chine needs to know the remote addresses of all the cached copies of an object. Each of
start read/write and process cached regions() test the object’s ’update protocol flag’ to
determine the correct protocol handler. This all-to-all communication to exchange the
addresses of local copies is needed only once at program start and is therefore not an
issue for program performance. The following two sections study which parts of the
general DSM protocol can/cannot benefit from RDMA.

4 Object Requests by Means of RDMA

Whenever an object is not locally available, the access check invokes either start read or
start write, depending on the type of accesses that follow. The object is then requested.
At receipt of the object by the requestor it is locally mapped by setting the thread’s
accessibility bits and by adding it to the cached-list of the requesting thread. This section
shows that some parts of the object request protocol can be done by RDMA. Others
must rely on regular send-receive pairs.

The fetch request itself cannot be sent via RDMA because of the following reasons.
First, with RDMA, the home-node would have to periodically poll memory to determine

Evaluation of RDMA Opportunities in an Object-Oriented DSM 221

message arrival. As the home-node will have other Java threads running, the program
would need to be instrumented with polling statements. Due to Jackal’s goal of running
unchanged multi-threaded Java programs (not necessarily in SPMD style), we cannot
require the Java programmers to insert polling statements in their codes. We therefore
would have to resort to automatic insertion of polling statements. This causes perfor-
mance problems as the frequency of polling is either too high or too low, both of which
would adversely effect performance. Second, an RDMA-ed fetch request would need to
correctly update any protocol state maintained at the home-mode. This would involve
allocating and freeing data structures from memory, updating the accessibility state vec-
tors, potentially sending invalidation messages, etc. These operations are too complex
to manage by using only simple RDMA transfers.

We therefore need to apply a normal send-receive protocol for sending fetch-request
messages. Message receipt at the home-node causes a special communication thread
(an ’upcall thread’) to wake up from a blocking-receive. It handles the message and
sends the object back to the requestor. In contrast, object receipt by the requestor can
be handled by RDMA as the receiver can actively wait for the message to arrive, since
the message will (definitely) take only a short amount of time to arrive.

Fig. 2 shows the pseudocode for issuing fetch requests. First, the requestor figures
out how large the combined received object and its protocol data will be. If this fits
in a pre-allocated and pre-registered RDMA-able memory region (jackal rdma alloc),
the fetch request is sent with the address of the local RDMA buffer. Otherwise the
object will be sent by the home-node’s communication thread as a normal message.
An interesting insight is that the home-node cannot directly place the object’s data into

void fetch request(javaObject x) {
// determine the size of the receive area to allocate:
int reply msg size = 1 + x.size() + dsm protocol overhead reply(x);
int home = x.home node();
// allocate a RDMA receive area from the device’s buffer pool
jackal rdma t *rmda descr = jackal rdma alloc(home, reply msg size);
if (rdma descr) { // a suitable RDMA receive area was found,

byte *end msg byte = rdma descr->memory[reply msg size];
*end msg byte = 0;
send fetch request with rdma reply(home, rdma descr);
// wait for the RNIC to copy the data in place
while (*end msg byte == 0) {}
process object reply message(rdma descr->local memory);
jackal rdma free(rdma descr);

} else {
ack t ack; // create a condition variable
send fetch request with normal reply msg(home, &ack);
// wait for then signal from by process object reply message()
thread condition wait(&ack);

}
}

Fig. 2. An efficient way to use RDMA for fast object fetching

222 R. Veldema and M. Philippsen

the requestor’s memory because in general the requestor needs to execute additional
protocol code upon message receipt. For example, in a situation where there are other
threads that are concurrently executing at the requestor and that already had write access
to the requested object, tests need to prevent their changes from being overwritten. A
naive RDMA-write initiated by the home-node cannot detect such concurrent writes as
it would require it to examine the requestor’s states, the (current) requestor’s copy and
its twin.

We therefore RDMA the complete reply message in the format of the normally sent
protocol message. In other words, process object reply message is always invoked for
a fetch-reply message, regardless of whether the message is received normally or via
RDMA. The overhead of active polling for the (RDMA-ed) message receipt is accept-
able even if concurrent threads at the requestor may be slowed down that way. Note that
the active memory polling for message receipt in the RDMA cannot be circumvented,
nor can the CPU be freed in the meantime. We can’t free the CPU using thread-yield
or sleep statements as either causes slow operating system calls or takes longer than a
message latency. It can be argued that polling memory in a tight loop could saturate the
memory bus. Fortunately however, the reads from memory in the polling loop run out of
the processor’s cache which is updated by a processor’s internal consistency protocols
on modern CPUs.

To summerize, for fetching objects, we must send the request as a normal mesage
while the reply message can be sent by RDMA. The reply message, cannot write to
the object in place in order to allow multi-threaded execution. Note that our RDMA-
rpc implementation is similar to what certain MPI implementations do internally for
managing acks. See for example [6].

We will now examine the opportunities of RDMA use (regardless of a performance
gain/loss) when we need to update copies of objects on other machines.

5 Processing the List(s) of Cached Objects

Each thread maintains four lists of cached objects, one for machine local read-only re-
gions where some other machine(s) are modifying it (local read-only), one for cluster-
wide read-only regions (lazy flushing), one for objects that are used by only one ma-
chine (home-only), and one for locally modified objects. At each entry and exit of a
synchronized block, all regions on these lists must be examined and processed (except
those on the lazy flush list). Depending on a region’s flag, the region is managed by the
invalidation protocol handler or by an update protocol handler. This section discusses
where RDMA can be used in those protocol handlers.

5.1 Invalidation Protocol Handlers

For each region on the list of locally modified regions we create a diff. These diffs are
then streamed to the home-node in 4 KByte packets. By streaming the diffs (instead
of buffering them to send them all at once) the home-node can already process incom-
ing diffs while the invalidator still continues to create them. Likewise, for each region
on the thread’s read-only list, one-user-less messages are streamed to the home-node.

Evaluation of RDMA Opportunities in an Object-Oriented DSM 223

The region is removed from either list as soon as the messages have been sent. The
home-only/lazy-flush lists are left alone. Upon receiving a diff or a one-user-less mes-
sage, a state-machine quickly performs any necessary state changes to implement home
migration, invalidation, or read-only replication.

Due the same reasons that prevented RDMA from being applicable to object requests
(polling requirements, too complex for RDMA management, etc.), diff messages and
one-user-less messages in the invalidation protocol cannot be transferred by means of
RDMA either. Hence, invalidation protocols cannot exploit RDMA capabilities when
propagating changes.

5.2 RDMA-Based Update Protocol Handlers

We have developed two alternative update protocols that solely use RDMA. The first
one updates remote objects/arrays in place. Diffs between modified regions and their
twins are created and applied (by RDMA) to the remote copies at all other machines.
This is a true zero-copy protocol performing RDMA from one Java heap to another.
The second update protocol stores the above diffs in a large intermediate array first, one
per target machine. These arrays are then broadcast via RDMA to all other machines
for local processing at their earliest convenience.

For simplicity of our prototype implementation, our current update/RDMA proto-
cols do not allow objects containing reference fields. For such objects the invalidation
protocol handler must be used. To illustrate the problem, consider the example in Fig. 3.
Here we have two machines, 0 and 1. Machine 0 initially holds objects A and B, where
A is marked for update-protocol management. The addresses of the copies of A are
therefore known at all machines. However the addresses of the copies of B at the other
machines are unknown.

Now a thread at machine 0 writes a reference to B in the R field of A. This eventually
causes a broadcast of A to machine 1. However, to ensure correctness, the R field of A
at machine 1 should be translated to the local copy of B (and potentially allocating the
copy of B if it did not already exist). A simple RDMA of A however would not do this,

Machine 0 Machine 1

A

B

B’

R

A’
R

Fig. 3. Reference transfers

224 R. Veldema and M. Philippsen

and write a copy of A with an illegal R field. Any circumvention of this problem would
no longer make the protocol zero-copy.

To allow references in update-protocol managed objects the best solution would be to
create a copy of the object in RDMA-able memory, replace references to their remotely
valid equivalents, and RDMA the copy one-after-the-other to each machine. This is
problematic as we need to know the remote addresses of any referred to objects, not only
for update-protocol managed objects. This would cause memory shortage problems for
maintaining the translation tables and additionally, large processing overheads as each
machine would need to translate each reference for each machine to broadcast to.

Because of the difficulties outlined above, we support update protocols only for ob-
jects containing no reference fields at all (and default to an invalidation protocol for
these).

Alternative 1, updating objects in place. To allow broadcasts of local modifications
to objects to their copies on remote nodes by means of in-place RDMA, the entire Java
object heap must be mapped and registered with the RDMA-device. Fortunately, this is
not a problem with modern Infiniband hardware. Modifications to a region are found
by comparison against its twin, which is a copy of the region from since it was last
processed. Conceptually, for each region in the list of modified regions we invoke the
update method shown in Fig. 4.

void update(Region r) {
diff t d = changes to r in respect to twin(r); apply ’d’ to twin(r);
for all machines p:

int64 t remote address = r->region hash[p], remote twin = r->twin hash[p];
RDMA ’d’ to ’p’ at remote address and remote twin;

}

Fig. 4. Update protocol handler, alternative 1: update in place

Note that we must update both the remote object and its remote twin because of
the following scenario. Assume two machines that write to an object with two fields,
X and Y. One machine exclusively modifies X the other Y. Machine 0 writes to X. It
then broadcasts the change to machine 1 and updates its own twin. If the other twin on
machine 1 would be left untouched, the next synchronized statement (by machine 1)
would cause a diff to be created for field X, causing X to be broadcast back to machine
0 overwriting any changes to X at machine 1 made in between the two broadcasts. Our
solution is to update both the remote region and the remote twin.

This protocol is a zero-copy protocol, since we RDMA the changed fields from one
object directly over the corresponding fields in the object copies at the other machines.

To increase performance, we deal with ranges of fields or array elements that have
changed at a time instead of processing single fields at a time. This intra-object coalesc-
ing of fields and array-element indexes allows to perform some bulk-RDMA. The same
coalescing of changed fields inside single objects is used in Alternative 2 of the update
protocol below as well.

Evaluation of RDMA Opportunities in an Object-Oriented DSM 225

Header

Field_T

Field_U

Field_V

Field_W

Field_S

Object P

Object Q

: Field has been modified
after last synchronization

Adjacent changes can be bundled
into a single RDMA operation

Header

Field_T

Field_U

Field_V

Field_W

Field_S

Fig. 5. Bulk communication example

To illustrate what exactly can and what cannot be shipped by bulk-RDMA, consider
Fig. 5. Here, two objects, P and Q, have been allocated consecutively in memory. Each
object is prefixed with an object header that contains information for the garbage collec-
tor, DSM, and the object’s meta-information (pointer to the method table for the object,
etc.). After the object-header reside the object’s fields. The fields marked with an ’X’
have been changed since the last lock/unlock (read: Java’s synchronized).

During diff-creation, we first process object P, and create one RDMA-range for the
combined fields S and T, and another RDMA-range for its field W. For object Q, we
create RDMA-ranges for its field S and another for the combination of its fields U and
V. To apply the diffs, we therefore have to perform four single RDMA-puts. We cannot
merge the RDMA-ranges of P’s W and Q’s S due to the intervening object header (as
the header is not read-only and furthermore, machine-local).

To summarize, this update protocol can be implemented with RDMA only. The up-
side of this update-protocol version is thus that there is virtually no overhead per object:
(ranges of) changes in objects are copied from one machine directly to the copy on an-
other machine. The downside is that there is no inter-object bulk-communication; only
some intra-object bulk-communication is possible.

Alternative 2, RDMA-broadcast of diff-arrays. A potential problem with alternative
1 of the RDMA-update protocol is that there is little potential for bulk communication
(it only supports some intra-object bulk communication). The second update protocol
rectifies this by supporting inter-object bulk communication. It builds arrays of diffs
and broadcasts these arrays in one go by means of RDMA, to all machines. Each ma-
chine then needs to periodically poll local memory to see if a new set of diffs has
arrived and then process them. If polling is performed often enough, and if the received

226 R. Veldema and M. Philippsen

void process arrived diff arrays() {
for each machine m and m != myself:

patch m.diff array in locally;
RDMA m.diff array.seq num to ’m’ at m.diff array.remote ack seq num

}
void find locally created changes() {

for all update region r on thread->cached modified list:
for each machine m: append diff(r) to m.diff array,

m.diff array.seq number = m.current bcast seq num;
}
void broadcast new diff array() {

for each machine m:
while m.current bcast seq num != m.diff array.acked seq num:

; // wait RDMA-ed ack
m.current bcast seq num++;
RDMA m.diff array to ’m’ at ’m.remote diff array’;

}

Fig. 6. Update protocol handler, alternative 2: the three steps to process diff-arrays

diff-arrays are easy to process, overheads are low. In our implementation, diff-array ele-
ments consist of a target address, a length in bytes, and the changed bytes. The methods
needed to process the list of modified regions are given in Fig. 6.

For the example of Fig. 5, we would create one diff-array containing the diff-ranges
{P.S-P.T}, {P.W}, {Q.S}, and {Q.U-Q.V}. These diff-ranges are then copied into
RDMA-able memory and copied by one single RDMA to all other machines.

The diff-array protocol therefore globally performs the following three steps. We
first check for diff-arrays that have arrived from other machines. Any incoming diffs
are applied to the local regions and their twins. Secondly, we create local diff-arrays,
one for each target machine (for regions that are not already handled by the invalidation
protocol). Finally, the diff-arrays are broadcast by RDMA. Note that a shipment of a
diff-array must have been acknowledged before shipping the next diff-array.

To understand the need for an ack-protocol, think of two machines 0 and 1, and two
objects, A and B. Machine 0 first updates A and broadcasts its modifications by placing
them into the diff-array in machine 1. Let us assume that directly afterwards, machine
0 were to update B and broadcast the changes to B with a new diff-array. If machine
1 had not yet acked the processing of the first diff(-array), the second broadcast would
overwrite the first diff(-array). The first diff and the update to A would be lost. We
therefore need an acknowledgment scheme.

We have implemented the acknowledgments with single-word RDMA-writes for ef-
ficiency. As soon as a machine has processed a diff-array it performs a single-word
RDMA to the diff-array originator. The acknowledgement protocol itself has thus a
very low overhead.

To summarize, this second update protocol can also be implemented with RDMA
only. The upside of this update-protocol version is that we allow both intra- and inter-
object bulk-communication to occur by sending arrays of diffs at a time. The downside
of this protocol is that the receiver needs to periodically test if a diff has to be processed.

Evaluation of RDMA Opportunities in an Object-Oriented DSM 227

If the receiver does not react quickly enough, the sender will need to wait a long time
for diff-processing acknowledgements.

6 Performance

Two aspects are important for DSM performance, the latency of fetching objects and
the available bandwidth for flushing or broadcasting modifications. This section ana-
lyzes performance with some micro-benchmarks and two applications. We use Water
and LU from the SPLASH benchmark suite [11]. Both are irregular and challenging and
thus stress the DSM protocols. Regular applications or applications with little commu-
nication are not well suited for showing protocol performance as differences are rarely
visible. Also, Water and LU form the extremes of a spectrum: whereas Water uses many
small objects, LU uses only one single array with larger contiguous modifications.

Our measurements were performed on a cluster of dual Xeon 3.20 GHz ”Nocona”
machines (800 MHz bus, 666 MHz front-side bus) with 2 GByte RAM each. The cluster
uses an Infiniband interconnect (10 GBit/s). We use our own low-latency communica-
tion package that maps directly to the Infiniband driver’s libraries. Our communication
package maps RDMA-puts directly on top of the Infiniband verbs layer to get the best
possible performance out of Infiniband. Note that normal message sends also use the
Infiniband verbs layer directly so that both normal message sends and RDMA sends are
fully optimized.

Micro-benchmarks. We first evaluate Jackal’s performance for some simple primi-
tive operations so that we can eliminate these as the sources of overhead in later bench-
marks. The relevant data is given in the upper part of Table 1 (to simplify presentation,
we only present numbers for 1, 2, and 8 machines (read: ’1, 2 and many’)).

To perform a synchronized block in a loop using one or two machines costs about the
same (568181 vs. 566051 locks per second). This is due to the low contention ratio for
the lock. The communication costs are very low given that only very small messages are
needed and most of the time these messages are handled entirely by the communication
thread (the thread that handles all incoming normal messages; RDMA messages of
course bypass this thread). On eight machines, the machine that holds the lock object
becomes overloaded with request and release messages. Hence, performance drops.
Lock contention does not yet seem to be a problem however.

Table 1. Micro-benchmark results

1 machine 2 machines 8 machines

Locks/second 568181 566051 1768
Barriers/second — 15015 9174

Object-request latency (no RDMA) — 49.9 μs 49.9 μs
Object-request latency (RDMA) — 24.6 μs 24.6 μs

RDMA-invalidation-flush-bandwidth 1.0 GByte/s 64.0 MByte/s 13.3 MByte/s
RDMA-in-place-update bandwidth 1.2 GByte/s 91.0 MByte/s 9.6 MByte/s
RDMA-diff-array-update bandwidth 1.2 GByte/s 84.0 MByte/s 7.7 MByte/s

228 R. Veldema and M. Philippsen

For the barrier micro-benchmark we use a Java object that consists of two fields, a
barrier-entry limit and a barrier-entry counter. The main work is performed in a synchro-
nized method that increments the counter. If the counter reaches its limit, the methods
calls Object.notifyAll(), otherwise Object.wait(). Each entry/exit of the synchronized
method and the execution of the wait method causes an invalidation of the cached ob-
jects and sends the barrier object to its home.

The lock, unlock, Object.notify(), and Object.wait() are implemented as normal mes-
sages sent to the home-node of the barrier object where they attempt to locally lock the
object. If the lock succeeds or the wait finishes, acknowledgement messages are sent
back to the remote machine to allow it to continue. In total, including flush messages
and synchronization messages, we achieve a barrier time of 109 μs per barrier on 8
machines (1

9174). While the absolute number may seem high, given the much lower
latencies for, say, an MPI barrier on Infiniband, Java’s semantics add significant over-
head to a barrier. For example, to handle multi-threading, Java requires an implemen-
tation to flush working memory, to send synchronization related messages, to handle
Object.wait() and Object.notify(), and finally to wake up threads from thread-pools to
handle protocol messages. With all this overhead, 109 μs is quite good.

Object request speed is measured by traversing a linked list. Each access to the ’next’
field in a linked node causes that node to be fetched. For a list containing N elements,
we thus get 2 N messages (one request message, one reply message with the node’s
data). We then take the average time required for a single list node fetch. Enabling
RDMA for object requests almost halves the latency for fetching a node (even though
only one side of the round trip can be optimized via RDMA). The numbers include the
time needed for state updates, address translations, and for allocating a local copy for
every list node. Regardless of whether 2 or 8 machines are used, the times are the same
due to the low protocol processing overheads.

User level bandwidth is measured as follows. All machines (1 thread per machine)
concurrently execute a loop and change each N-th element of a 32KByte array. The
modifications are propagated via a single, empty synchronized block. This inner loop
is performed 20.000 times to give us an indication of the application-level bandwidth
available (32K * 20.000 / # seconds used). The same benchmark is used for the inval-
idation protocol and the two update protocols. When only 1 or 2 machines are used,
both update protocols outperform the invalidation protocol. With larger numbers of ma-
chines, the invalidation protocol wins due to the high overheads in both update proto-
cols. Note that for all bandwidth measurements, RDMA is also used for region requests
(repeatedly for the invalidation protocol, once for the update protocols).

Water performs an (N-square) N-body simulation of water molecules coded as in
Fig. 7. We simulate only 1728 molecules to stress protocols. The innermost array el-
ements (the NUM ATOMS dimension of MolData), contain the actual molecule data.
The other data here is read-only and is cluster-wide read-only replicated by the proto-
cols. Note that NUM ATOMS equals ’3’ here (for two hydrogen atoms and one oxygen
atom). This stresses protocols as modified data is encapsulated in many of these small
arrays.

Evaluation of RDMA Opportunities in an Object-Oriented DSM 229

class MolData {
double [][]data = new double [NUM DIMENSIONS] [NUM ATOMS];
...

}

class MoleculeEnsemble {
MolData[][] f = new MolData [MAX ORDERS] [getNumMolecules()];
...

}
Fig. 7. Water’s main datastructures

An invalidation protocol with switched on RDMA-request, improves performance
by 20.6% on 8 machines (13.1 seconds with RDMA-request versus 16.5 seconds with
regular messaging, see Table 2).

Regardless of the number of machines used, both update protocols are slower as we
pay two penalties. First, although changes are broadcast to every machine (eliminating
the need to explicitly fetch them), the changes are not used by every processor. The exact
set of consumers is hard to detect by the DSM protocol without changing Water’s source
code. In contrast, the invalidation protocol pulls the changes to only those machines that
require them.

The second penalty is due to Java’s lack of true multi-dimensional arrays (Java pro-
vides only arrays of references to sub-arrays). Since the data of all the innermost 1D
arrays are not contiguous in memory, the first RDMA update protocol (updates in place)
needs a large number of RDMA transfers. On the other hand, the diff-array RDMA up-
date protocol version has a lot of administrative overhead for each diff-array. Even the
higher efficiency of the RDMA hardware (compared to normal send/receive) cannot
overcome this. The slight advantage of diff-array RDMA-update protocol on only two
machines is quickly lost with increasing numbers of machines.

LU factorizes a dense matrix, encoded as a single flattened array of doubles. Due
to the blocking technique used, every machine accesses only a few linear segments of
array elements. Hence the number of region fetches needed is less than in Water. Use
of RDMA improves the performance of the invalidation protocol only slightly by 3.6%
(19.6 versus 18.9 seconds).

Table 2. Application results in walltime (seconds)

1 machine 2 machines 8 machines

Water, no RDMA 56.4 41.2 16.5
Water, RDMA-request invalidation 56.4 40.2 13.1
Water, RDMA-in-place-update 56.9 41.1 26.8
Water, RDMA-diff-array-update 56.9 36.6 20.0

LU, no RDMA 47.3 30.1 19.6
LU, RDMA-request invalidation 47.3 32.9 18.9
LU, RDMA-in-place-update 47.0 37.5 26.1
LU, RDMA-diff-array-update 47.0 41.1 23.2

230 R. Veldema and M. Philippsen

The update protocols are always a loss for LU. Unlike Water, LU’s threads write
larger consecutive chunks in a single linearized matrix. Because of array chunking,
fewer updates and hence fewer RDMA broadcasts are needed. A few hundreds of 2
KByte array segments are broadcast instead of tens of thousands of 24 byte broadcasts
as in Water. LU also suffers from the effect that broadcast data is often not (immedi-
ately) used by the receiving CPUs. Hence the invalidation protocol (with RDMA fetch)
is faster.

Finally, there are many array sections on the list of modified regions that are actu-
ally unmodified since the last list processing. This happens because in update protocols,
modified regions are never removed from the modified-regions list, causing many empty
diffs. However, since we still need to test every single array element for potential mod-
ifications at each synchronization, the processing requirements of the update protocols
increase. In Water, this effect does not occur since each processor writes the same wa-
ter molecules each time. Of course, the invalidation protocol does not suffer from this
effect as its regions are removed from the modified-regions list at invalidation time (but
each access afterward triggers an access check to add it again to one of the flush-lists).

7 Conclusions

In our system, invalidation and update protocol managed regions can coexist. We found
that RDMA can be successfully applied to invalidation protocols and have designed two
update protocols that solely use RDMA. We have seen performance inprovements of up
to 20.6% using RDMA for object-fetching. Without source code changes (for example,
those suggested by [3]), even when modern RDMA hardware is used throughout, up-
date protocols are still slower than invalidation protocols. This is because of three main
reasons. First, when adding address translation to allow large address spaces, the cost
of protocol processing grows large in update-protocols as they need, per-machine pro-
cessing.

Second, message aggregation is hard to do with current Infiniband RDMA imple-
mentations as they currently lack remote scatter. Ideally, we would like to present the
RDMA hardware with two lists of I/O vectors. One I/O vector for where to copy the
data from at the local machine, and another I/O vector for where to copy the data to at
the target machine. The current Infiniband VERBS allows only very limited use of I/O
vectors.

Finally, another RDMA-feature currently missing is signalled-IO. Signalled RDMA
would cause an interrupt at the receiver once data has been copied. This would not only
allow to free the CPU when waiting for message replies but it would also allow us to
immediately reply to unexpected incoming messages (instead of periodically tested for
them).

References

1. Carter, J.B., Bennett, J.K., Zwaenepoel, W.: Techniques for reducing consistency-related
communication in distributed shared-memory systems. ACM Trans. Comput. Syst. 13(3),
205–243 (1995)

Evaluation of RDMA Opportunities in an Object-Oriented DSM 231

2. Eichner, H., Trinitis, C., Klug, T.: Implementation of a DSM-System on Top of InfiniBand.
In: Proc. 14th Euromicro Intl. Conf. on Parallel, Distributed, and Network-Based Processing
(PDP 2006), Washington, DC, pp. 178–183 (February 2006)

3. Falsafi, B., Lebeck, A.R., Reinhardt, S.K., Schoinas, I., Hill, M.D., Larus, J.R., Rogers, A.,
Wood, D.A.: Application-specific protocols for user-level shared memory. In: Supercomput-
ing, Washington, DC, pp. 380–389 (November 1994)

4. Fang, W., Wang, C.L., Zhu, W., Lau, F.C.M.: A novel adaptive home migration protocol in
home-based DSM. In: Proc. of the 2004 IEEE Intl. Conf. on Cluster Computing, San Diego,
CA, pp. 215–224 (September 2004)

5. Iosevich, V., Schuster, A.: Multithreaded Home-Based Lazy Release Consistency over VIA.
In: Proc. 19th IEEE Intl. Parallel and Distributed Processing Symp (IPDPS 2004), Santa Fe,
New Mexico, pp. 59–70 (April 2004)

6. Liu, J., Jiang, W., Wyckoff, P., Panda, D., Ashton, D., Buntinas, D., Gropp, W., Toonen,
B.: Design and Implementation of MPICH2 over InfiniBand with RDMA Support. In: Int’l
Parallel and Distributed Processing Symposium (IPDPS 2004), Santa Fe, NM (April 2004)

7. Noronha, R., Panda, D.K.: Reducing Diff Overhead in Software DSM Systems using RDMA
Operations in InfiniBand. In: Workshop on Remote Direct Memory Access (RDMA): RAIT
2004 (Cluster 2004), San Diego, CA (September 2004)

8. Protic, J., Tomasevic, M., Milutinovic, V.: A survey of distributed shared memory systems.
In: Proc. 28th Hawaii Intl. Conf. on System Sciences (HICSS 1995), pp. 74–84 (January
1995)

9. Veldema, R., Hofman, R.F.H., Bhoedjang, R.A.F., Bal, H.E.: Runtime-Optimizations for a
Java DSM. In: Proc. ACM 2001 Java Grande Conf., San Francisco, CA, pp. 89–98 (June
2001)

10. Veldema, R., Hofman, R.F.H., Bhoedjang, R.A.F., Jacobs, C.J.H., Bal, H.E.: Source-level
global optimizations for fine-grain distributed shared memory systems. In: 8th Symp. on
Principles and Practices of Parallel Programming (PPoPP), Snowbird, Utah, pp. 83–92 (June
2001)

11. Woo, S.C., Ohara, M., Torrie, E., Singh, J.P., Gupta, A.: The SPLASH-2 Programs: Char-
acterization and Methodological Considerations. In: Proc. 22nd Intl. Symp. on Computer
Architecture, Santa Margherita Ligure, Italy, pp. 24–36 (June 1995)

V. Adve, M.J. Garzarán, and P. Petersen (Eds.): LCPC 2007, LNCS 5234, pp. 232–245, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Automatic Communication Performance Debugging in
PGAS Languages

 Jimmy Su1 and Katherine Yelick1,2

1 Computer Science Division, University of California at Berkeley
2 Lawrence Berkeley National Laboratory

{jimmysu,yelick}@cs.berkeley.edu

Abstract. Recent studies have shown that programming in a Partition Global
Address Space (PGAS) language can be more productive than programming in
a message passing model. One reason for this is the ability to access remote
memory implicitly through shared memory reads and writes. But this benefit
does not come without a cost. It is very difficult to spot communication by
looking at the program text, since remote reads and writes look exactly the
same as local reads and writes. This makes manual communication performance
debugging an arduous task. In this paper, we describe a tool called
ti-trend-prof that can do automatic performance debugging using only
program traces from small processor configurations and small input sizes in
Titanium [13], a PGAS language. ti-trend-prof presents trends to the
programmer to help spot possible communication performance bugs even for
processor configurations and input sizes that have not been run. We used ti-
trend-prof on two of the largest Titanium applications and found bugs that
would have taken days in under an hour.

Keywords: PGAS languages, automatic performance debugging.

1 Introduction

Titanium is a Partitioned Global Address Space language. It combines the program-
ming convenience of shared memory with the locality and performance control of
message passing. In Titanium, a thread running on one processor can directly read or
write the memory associated with another. This feature significantly increases
programmer productivity, since the programmer does not need to write explicit com-
munication calls as in the message passing model. Unfortunately, this is also a signifi-
cant source of performance bugs. Many unintended small remote reads and writes go
undetected during manual code audits, because they look exactly the same as local
reads and writes in the program text. Furthermore, these performance bugs often do
not manifest themselves until the program is run with large processor configurations
and/or large input sizes. This means the bugs are caught much later in the develop-
ment cycle, making them more expensive to fix.

In this paper, we describe an automatic communication performance debugging tool
for Titanium that can catch this type of bugs using only program runs with small proces-
sor configurations and small input sizes. Trends on the number of communication

 Automatic Communication Performance Debugging in PGAS Languages 233

calls are presented to the programmer for each location in the source code that incurred
communication during the program runs. Each trend is modeled by a linear function or a
power law function in terms of the number of processors or the input problem size. The
models can be used to predict communication performance bottlenecks for processor
configurations and problem sizes that have not yet been run. We used the debugging
tool on two of the largest Titanium applications and report the bugs that were found
using the tool.

2 Motivating Example

To illustrate the difficulty of manual performance debugging in a PGAS language like
Titanium, we will use a simple sum reduction example in this section. Processor 0
owns a double array. We would like to compute the sum of every element in the ar-
ray. To spread the workload among the processors, each processor gets a piece of the
array and computes the sum for that part. At the end, the partial sums are added to-
gether using a reduction.

Two versions of the code are shown in Figure 1 and Figure 2. The code in Figure 1
has a performance bug in it. The two versions are identical except for two lines of code.
The loop that computes the actual sum is identical. In the buggy version, each processor
only has a pointer to the array on processor 0. array.restrict(myPart) returns
a pointer to a subsection of array that contains elements from startIndex to end-
Index. Each dereference in the foreach loop results in communication to processor 0 to
retrieve the value at that array index. Processor 0 becomes the communication bottle-
neck as all other processors are retrieving values from it.

1 double [1d] array;
2 if (Ti.thisProc() == 0){
3 array = new double[0:999];
4 }
5 array = broadcast array from 0;
6 int workload = 1000 / Ti.numProcs();
7 if (Ti.thisProc() < 1000 % Ti.numProcs()){
8 workload++;
9 }
10 int startIndex = Ti.thisProc() * workload;
11 int endIndex = startIndex + workload - 1;
12 RectDomain<1> myPart = [startIndex:endIndex];
13 double [1d] localArray = array.restrict(myPart);
14 double mySum = 0;
15 double sum;
16
17 foreach (p in localArray.domain()) {
18 mySum += localArray[p];
19 }
20 sum = Reduce.add(mySum, 0);

Fig. 1. Sum reduction example with performance bug in it (Version 1)

234 J. Su and K. Yelick

12 RectDomain<1> myPart = [startIndex:endIndex];
13 double [1d] localArray = new double[myPart];
14 localArray.copy(array.restrict(myPart));
15 double mySum = 0;
16 double sum;
17
18 foreach (p in localArray.domain()) {
19 mySum += localArray[p];
20 }
21
22 sum = Reduce.add(mySum, 0);

Fig. 2. Sum reduction example without the performance bug (Version 2)

Figure 2 shows the version without the performance bug in it. Each processor first
allocates space for the localArray, then it retrieves the part of array that it needs
into localArray using one array copy call. The array copy results in one bulk get
communication. The subsequent dereferences inside the loop are all local.

Although this is a very simple example, this kind of communication pattern is quite
common, especially in the initialization phase of a parallel program, where processor
0 typically processes the input before distributing the workload to the rest of the proc-
essors. It is difficult to catch this type of bugs manually in Titanium, since the two
versions of the program look very similar. For small processor configurations, the
performance degradation may not be noticeable given that the initialization is run
only once.

We would like a tool that can alert the programmer to possible performance bugs
automatically earlier in the development cycle, when we are only testing the program
with small processor configurations and small input sizes. For this example, the num-
ber of communication calls at the array dereference in the buggy version can be ex-
pressed as (1-1/p)*size, where p is the number of processors and size is the
size of the array. If we fix the array size at 1000 elements, then we can see that the
number of communication calls at the array dereference varies with the number of
processors as in Figure 3. The graph shows the actual observed communication calls
at the array dereference for 2, 4, and 8 processors along with the predicted curves for
both versions of the code.

In the rest of this paper, we will describe a tool called ti-trend-prof that can
present communication trends automatically given only program traces for small
processor configurations and/or small input sizes.

3 Background

Before getting into the details of ti-trend-prof, we will give the necessary
background information in this section. This includes brief introductions on Titanium,
GASNet trace, and trend-prof.

 Automatic Communication Performance Debugging in PGAS Languages 235

Fig. 3. The number of communication calls at the array dereference is expressed in terms of the
number of processors for a fixed array size of 1000 elements for both versions of the program.
The X axis is the number of processors, and the Y axis is the number of communication calls.
Version 1 is clearly not scalable. For larger array sizes, the gap between version 1 and version 2
would widen.

3.1 Titanium

Titanium is a dialect of Java, but does not use the Java Virtual Machine model.
Instead, the end target is assembly code. For portability, Titanium is first translated
into C and then compiled into an executable. In addition to generating C code to run
on each processor, the compiler generates calls to a runtime layer based on GASNet
[2], a lightweight communication layer that exploits hardware support for direct
remote reads and writes when possible. Titanium runs on a wide range of platforms
including uniprocessors, shared memory machines, distributed-memory clusters of
uniprocessors or SMPs (CLUMPS), and a number of specific supercomputer archi-
tectures (Cray X1, Cray T3E, SGI Altix, IBM SP, Origin 2000, and NEC SX6).

Titanium is a single program, multiple data (SPMD) language, so all threads exe-
cute the same code image. A thread running on one processor can directly read or
write the memory associated with another. This feature significantly increases pro-
grammer productivity, since the programmer does not need to write explicit commu-
nication calls as in the message passing model.

236 J. Su and K. Yelick

3.2 GASNet Trace

Titanium's GASNet backends include features that can be used to trace communica-
tion using the GASNet trace tool. When a Titanium program is compiled with GAS-
Net trace enabled, a communication log is kept for each run of the program. In this
communication log, each communication event along with the source code line num-
ber is recorded.

3.3 Trend-Prof

trend-prof [7] is a tool developed by Goldsmith, Aiken, and Wilkerson for meas-
uring empirical computational complexity of programs. It constructs models of em-
pirical computational complexity that predict how many times each basic block in a
program runs as a linear or a power law function of user-specified features of the
program’s workloads. An example feature can be the size of the input. It was previ-
ously used on sequential programs for performance debugging.

4 Bug Types

In parallel programming, there are many causes for communication performance
bugs. This includes excessive amount of communication calls, excessive volume of
communication, and load imbalance. Our work so far in ti-trend-prof has been
focused on finding the first type of bugs automatically. Our framework can be ex-
tended to address the other two types of bugs. In Titanium, there are two main causes
for excessive amount of communication calls:

1. Remote pointer dereference
2. Distribution of global meta-data

The first case can come up in two situations. One is when a processor has a shallow
copy of an object that contains remote references in its fields. Even though the object
is in local memory, accessing its field that contains remote reference would result in a
round trip of small messages to a remote processor. If the field is accessed frequently
during program execution, it can significantly degrade performance. The second
situation comes up during workload distribution among processors. In parallel pro-
gram, it is often the case that one processor does I/O during initialization, and then the
workload is distributed among all processors. The motivating example in Section 2
fits this description.

The second case comes from distribution of global meta-data. In parallel programs,
it is often desirable to have global meta-data available to each processor so that it can
find remote objects by following pointers. Each processor owns a list of objects. A
naïve way of programming the distribution of meta-data is by broadcasting each
pointer individually. This performance bug would not be noticeable when the number
of objects is small. Only a large problem size would expose this problem, which is
likely to be much later in the development cycle.

In the experimental section, we will show that these types of performance bugs ex-
ist in two of the largest Titanium applications written by experienced programmers,

 Automatic Communication Performance Debugging in PGAS Languages 237

and ti-trend-prof allowed us to find the bugs automatically within an hour
instead of days through manual debugging.

5 ti-trend-prof

In this work, a new tool called ti-trend-prof is developed to combine the use of
GASNet trace and trend-prof to do communication performance debugging for
parallel programs. ti-trend-prof takes GASNet trace outputs for small proces-
sor configurations and/or small input sizes, and feeds them to a modified version of
trend-prof that can parse GASNet trace outputs. The output is a table of trends
per Titanium source code location that incurred communication for the input traces.

The number of processors and the input problem size can be used as features. The
linear function a + bx and the standard power law function with offset a + bx^c
are used to model the trend at each source code location. The function which mini-
mizes error is picked to be the model. For example, if we fixed the problem size and
varied the number of processors, then the trend would tell us how does the number of
communication calls change at this location as we vary the number of processors.
Similarly, if we fixed the number of processors and varied the problem size, then the
trend would tell us how does the number of communication calls change as we vary
the problem size. These trends can be used to predict communication performance
bottlenecks for processor configurations and input sizes that we have not run yet. This
is particularly useful in the beginning of the development cycle, where we do most of
the testing on small processor configurations and small inputs. In the table, the trends
are first ranked by the exponent, then by the coefficient. Larger values are placed
earlier in the table. The goal is to display trends that are least scalable first to the pro-
grammer.

In practice, many of the communication patterns can be modeled by the linear func-
tion or the power law function. But there are algorithms that do not fall into this cate-
gory, such as a tree based algorithms or algorithms that change behavior based on the
number of processors used. We don’t intend to use the linear or power law trends as
the exact prediction in communication calls, but rather as an indicator for possible
performance bugs. For example, if the number of communication calls at a location is
exponential in terms of the number of processors, then ti-trend-prof would
output a power law function with a large exponent. Although this does not match the
actual exponential behavior, it would surely be presented early in the output to alert
the programmer.

6 Experimental Results

In this section, we show the experimental results on running ti-trend-prof on
two large Titanium applications: heart simulation [6] and AMR [12]. To obtain the
GASNet trace files, the programs were run on a cluster, where each node has a dual
core Opteron. We used both cores during the runs. This means that intra-node com-
munication is through shared memory, which does not contribute to communication
calls in the GASNet trace counts.

238 J. Su and K. Yelick

6.1 Heart Simulation

The heart simulation code is one of the largest Titanium applications written today. It
has over 10000 lines of code developed over 6 years. As the application matures, the
focus has been on scaling the code to larger processor configurations and larger prob-
lem sizes. The initialization code has remained largely unchanged over the years.
Correctness in the initialization code is crucial. But we have not done much perform-
ance tuning on the initialization code, since it is run only once in the beginning of
execution.

Recently, we had scaled the heart simulation up to 512 processors on a 512^3 prob-
lem. On our initial runs, the simulation never got passed the initialization phase after
more than 4 hours on the 512 processors. The culprit is in the following lines of code.

// missing immutable keyword
class FiberDescriptor{
 public long filepos;
 public double minx, maxx, miny, maxy, minz, maxz;
 ...
}

/* globalFibersArray and the elements in it live on

processor 0 */
FiberDescriptor [1d] globalFibersArray;
FiberDescriptor [1d] local localFibersArray;
...
localFibersArray.copy(globalFibersArray);
foreach (p in localFibersArray.domain()){
 FiberDescriptor fd = localFibersArray[p];
 /* Determine if fd belongs to this processor by ex-

amining the fields of fd */
 ...
}

Fig. 4. Fiber distribution code containing a performance bug due to lack of immutable keyword

The programmer meant to add the “immutable” keyword to the declaration for
the FiberDescriptor class. But the keyword was missing. Immutable classes
extend the notion of Java primitive type to classes. For this example, if the FiberD-
escriptor were immutable, then the array copy prior to the foreach loop would
copy every element in the globalFibersArray to the localFibersArray
including the fields of each element. Without the “immutable” keyword, each proces-
sor only contains an array of pointers in localFibersArray to FiberDe-
scriptor objects that live on processor 0. When each processor other than
processor 0 accesses the fields of a FiberDescriptor object, a request and reply
message would occur between the processor accessing the field and processor 0. This
performance bug is hard to find manually because the source of the bug and the place
where the problem is observed are far from each other.

 Automatic Communication Performance Debugging in PGAS Languages 239

When the processor configuration is small and the number of FiberDescrip-
tor objects is small, the effects of this performance bug are hardly observable. Only
when we start scaling the application over 100 processors on the 512^3 problem did
we notice the problem. The size of the globalFibersArray grows proportion-
ately to the problem size of the input. As we increase the number of processors for the
same size problem, the number of field accesses to FiberDescriptor objects
increases linearly. Each processor reads through the entire array to see which fiber
belongs to it. Every field access to a FiberDescriptor object results in messages
to processor 0. At large processor configurations and large problem sizes, the flood of
small messages to and from processor 0 becomes the performance bottleneck.
ti-trend-prof can catch this bug earlier in the development cycle using only

program runs from small processor configurations and small input sizes. It presents
the trends in the communication performance both in terms of the number of proces-
sors and the input size. Trends are presented for each location in the source code that
incurred communication as reflected in the GASNet traces. For a large application
such as the heart code, there are many places in the program where communication
occurs. In order to present the most interesting results to the user first, trends are
sorted first by the exponent followed by the coefficients. Large values get placed
earlier in the table. This allows users to see the least scalable locations predicted by
the trends first.

Table 1. Trends output from ti-trend-prof for the heart simulation given the GASNet
traces for the 128^3 size problem on 4, 8, 16 and 32 processors

Location Operation Feature Max
FFTfast.ti 8727 Get 41p^2 - 416 198400
FFTfast.ti 8035 Put 41p^2 – 416 198400
MyMailBox.ti 384 Put 9p^2 - 789 404120
MetisDistributor.ti 1537 Get 304690p – 1389867 18330567
FluidSlab.ti 3685 Put 200p 12800
FluidSlab.ti 3725 Put 200p 12800

Table 1 shows the trends presented by ti-trend-prof given GASNet traces
for the heart code on 4, 8, 16, and 32 processors for the 128^3 problem. The trend for
the performance bug is in red. The trend shows that the number of get calls on line
1537 in the MetisDistributor file is a linear function with a large coefficient. This
clearly alarms the programmer since the number of communication calls should be
zero at this location if the “immutable” keyword were not missing. Figure 5 shows the
power law model for the buggy line along with observed data.
ti-trend-prof can find this same bug in another way. Figure 6 shows the

trend when given GASNet traces for the 32^3, 64^3, and 128^3 size problems on 8
processors. The trend for the performance bug location in terms of the input size also
clearly indicates that there is a performance bug here. The number of get calls grows
super linearly with the problem size. If the “immutable” keyword were there, there
should not be any communication calls for this location.

240 J. Su and K. Yelick

Fig. 5. Graph of the power law function generated by ti-trend-prof for the buggy line
along with actual observations of communication counts. The X axis is the number of proces-
sors, and the Y axis is the count of communication calls.

We also note that not all trends presented by trend-prof are performance
bugs. For example, the first trend presented in Table 1 represents the communica-
tion pattern during the global transpose in the FFT. The global transpose uses an all
to all communication pattern, which makes the number of communication calls
grow as the square of the number of processors. The trend presented by trend-
prof confirms this.

6.2 Adaptive Mesh Refinement

Adaptive Mesh Refinement (AMR) is another large Titanium application. AMR is
used for numerical modeling of various physical problems which exhibit multiscale
behavior. At each level of refinement, rectangular grids are divided into boxes dis-
tributed among processors. Using ti-trend-prof, we were able to find two per-
formance bugs in AMR, where one was known prior from manual debugging and the
other was not found previously.

6.2.1 Excessive Use of Broadcasts
The first bug appears in the meta-data set up of the boxes at each refinement level.
Boxes are distributed among all the processors. But each processor needs to have the

 Automatic Communication Performance Debugging in PGAS Languages 241

Fig. 6. Graph of the power law function generated by ti-trend-prof for the buggy line
along with actual observations of communication counts. The X axis is the dimension length of
the input problem, (dimension length)^3 gives us the input problem size. The Y axis is the
communication count.

meta-data to find neighboring boxes that may live on another processor. Figure 7
shows the code for setting up the meta-data. Instead of using array copies to copy the
array of pointers from each processor, it uses one broadcast per box to set up the
global box array TA. For a fixed size problem, the number of broadcasts due to the
code in Figure 7 is the same regardless of the number of processors. But each proces-
sor must wait for the broadcast value to arrive if the broadcast originates from a re-
mote processor. As more processors are added for the fixed size problem, more of the
values come from remote processors. Subsequently, each processor performs more
waits at the barrier as the number of processors increases, and the total number of
wait calls sum over all processors increases linearly as shown in Figure 8. If array
copies were used, the number of communication calls should only increase by 2p-1
when we add one more processor.

/* Meta-data set up*/
for (k=0;k<m_numOfProcs;k++)
 for (j=0;j<(int single)m_layout.numBoxesAt(k);j++)
 TA[k][j]=broadcast TA[k][j] from k;

Fig. 7. Fiber distribution code containing a performance bug due to lack of immutable keyword

242 J. Su and K. Yelick

Figure 8 shows the trend presented by ti-trend-prof given the GASNet
traces for 2, 4, 6, and 8 processors for the 128^3 problem. It clearly indicates to the
programmer that the increase in number of communication calls is larger than ex-
pected. Prior to the development of ti-trend-prof, it took three programmers to
find this bug manually in four days. Similar to the bug in the heart code, the bug was
caught late in the development cycle. This performance bug did not become notice-
able until we ran the code beyond 100 processors.

Fig. 8. Graph of the power law function generated by ti-trend-prof for the excessive
broadcast along with actual observations of communication counts. Each processor must wait at
the broadcast if the broadcast originates from a remote processor. As the number of processor
increases for a fixed size problem, more of the broadcast values come from remote
processors.

6.2.2 Shallow Copy of Meta-data
After the set up of meta-data, each processor only has a pointer to boxes that live
remotely. Whenever it needs to perform operations on the underlying array for the
box, it needs to call an accessor method for the box, which incurs communication if
the box is remote. The number of calls that require communication increases with the
number of processors, because more neighboring boxes become remote as processors
are added. ti-trend-prof reports that the number of communication calls result-
ing from the accessor method grows almost as the square of the number of processors.
If we had a deeper copy of the meta-pointer, which includes the caching of the pointer
to the underlying array, we would avoid a majority of the communication calls at the

 Automatic Communication Performance Debugging in PGAS Languages 243

accessor method. The meta-data for the boxes are reused over many iterations. This
bug was not found previous through manual performance debugging.

7 Related Work

There has been vast amount of work in the area of performance debugging in both
sequential programs and parallel programs. For sequential programs, gprof [8] is a
widely used tool for estimating how much time is spent in each function. Gprof sam-
ples the program counter during a single run of the program. Then it uses these sam-
ples to propagate back to the call graph during post processing. The key difference is
that we use multiple runs of the program to come up with trends that can predict per-
formance problems for processor configurations and/or problem sizes that have not
been run. Gprof only gives performance information for a single run of the program.

Kluge et al. [9] focus specifically on how the time a MPI program spends commu-
nicating scales with the number of processors. They fit these observations to a degree
two polynomial, finding a, b, and c to fit y = a+bx+cx^2. Any part of the program
with a large value for c is said to parallelize badly. Our work differs in that we can use
both the number of processors and the input size as features to predict performance.
We have used our tool on large real applications. The experiment in [9] only shows
data from a Sweep3D benchmark on a single node SMP. Their technique is likely to
have much worst errors when used on a cluster of SMPs. They are modeling MPI
time, which would be affected by how many processors are used within a node to run
MPI. All processors within a node share resource in communication with other nodes.
Furthermore, our target programs are written in a PGAS language instead of MPI,
which are much harder to find communication locations manually by looking at the
program text.

Vetter and Worley [11] develop a technique called performance assertions that al-
lows users to assert performance expectations explicitly in their source code. As the
application executes, each performance assertion in the application collects data im-
plicitly to verify the assertion. In contrast, ti-trend-prof does not require addi-
tional work from the user to add annotations. Furthermore, it may not be obvious to
the programmer as to which code segment should have performance assertions. ti-
trend-prof found performance bugs in code segments where the user didn’t think
was performance critical. But those performance bugs severely degrade performance
only on large processor configurations and large problem sizes, and ti-trend-
prof helps the user to identify them by presenting the trends.

Coarfa et al. [4] develop the technique for identifying scalability bottlenecks in
SPMD programs by identifying parts of the program that deviates from ideal scaling.
In strong scaling, linear speedup is expected. And in weak scaling, constant execution
time is expected. Call path profiles are collected for two or more executions on differ-
ent numbers of processors. Parts of the program that do not meet the scaling expecta-
tions are identified for the user.

Brewer [3] constructs models to predict performance of a library function imple-
mentation as a function of problem parameters. The parameters are supplied by the
user. For example, the radix width can be a parameter for an implementation of the
radix sort algorithm. Based on those parameters, the tool picks the implementation

244 J. Su and K. Yelick

that the model predicts to be the best. Our tool does not require the user to have the
knowledge to supply such parameters.

There are also vast amount of work based on the LogP [5] technique. In particular,
Rugina and Schauser [10] simulate the computation and communication of parallel
programs to predict their worst-case running time given the LogGP [1] parameters for
the targeted machine. Their focus is on how to tune a parallel program by changing
communication patterns given a fixed size input.

8 Conclusion

In this paper, we described a tool called ti-trend-prof that can help Titanium
programmers to do communication performance debugging automatically. Given only
program traces from small processor configurations and/or small input sizes,
ti-trend-prof provides trends for each source code location that incurred
communication. Trends are modeled as a standard power law function with offset.
Programmers are alerted to trends with large exponents and coefficients, which corre-
spond to possible communication performance bug in the program. The technique is
completely automatic without any manual input from the user.

We used ti-trend-prof on two large Titanium applications, and we found
three real performance bugs in the code. Two of them were known previously from
time consuming manual debugging. The third was unknown prior to the use of the
tool. These results show the feasibility of using an automatic tool to find communica-
tion performance bugs in PGAS languages, given only the program traces from small
processor configurations and small input sizes.

Acknowledgements

The authors would like to thank Simon Goldsmith and Daniel S. Wilkerson for intro-
ducing us to trend-prof. Their enthusiasm and persistence greatly encouraged us
to adapt trend-prof for our needs. Simon Goldsmith also helped us in implement-
ing the parsing of GASNet trace outputs. Thanks go to the members of the Titanium
research group, who provided valuable suggestions and feedbacks about this work.
We would also like to thank the anonymous reviewers for their helpful comments on
the original submission.

This work was supported in part by the Department of Energy under DE-FC02-
06ER25753, by the California State MICRO Program, by the National Science Foun-
dation under ACI-9619020 and EIA-9802069, by the Defense Advanced Research
Projects Agency under F30602-95-C-0136, by Microsoft, and by Sun Microsystems.

References

1. Alexandrov, A., Ionescu, M.F., Schauser, K.E., Scheiman, C.: LogGP: Incorporating long
messages into the LogP model. Journal of Parallel and Distributed Computing 44(1), 71–
79 (1997)

 Automatic Communication Performance Debugging in PGAS Languages 245

2. Bonachea, D.: GASNet specifications (2003)
3. Brewer, E.A.: High-level optimization via automated statistical modeling. In: PPOPP 1995:

Proceedings of the 5th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pp. 80–91. ACM Press, New York (1995)

4. Coarfa, C., Mellor-Crummey, J., Froyd, N., Dotsenko, Y.: Scalability Analysis of SPMD
Codes Using Expectations. In: PPOPP (2007)

5. Culler, D.E., Karp, R.M., Patterson, D.A., Sahay, A., Schauser, K.E., Santos, E., Subramo-
nian, R., von Eicken, T.: LogP: Towards a realistic model of parallel computation. In: Pro-
ceedings 4th ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming, pp. 1–12 (1993)

6. Givelberg, E., Yelick, K.: Distributed Immersed Boundary Simulation in Titanium (2004)
7. Goldsmith, S., Aiken, A., Wilkerson, D.: Measuring Empirical Computational Complexity.

Foundations of Software Engineering (2007)
8. Graham, S.L., Kessler, P.B., Mckusick, M.K.: Gprof: A call graph execution profiler. In:

SIGPLAN 1982: Proceedings of the 1982 SIGPLAN Symposium on Compiler Construc-
tion, pp. 120–126. ACM Press, New York (1982)

9. Kluge, M., Knüpfer, A., Nagel, W.E.: Knowledge based automatic scalability analysis and
extrapolation for MPI programs. In: Cunha, J.C., Medeiros, P.D. (eds.) Euro-Par 2005.
LNCS, vol. 3648. Springer, Heidelberg (2005)

10. Rugina, R., Schauser, K.: Predicting the running times of parallel programs by simulation.
In: Proceedings of the 12th International Parallel Processing Symposium and 9th Sympo-
sium on Parallel and Distributed Processing (1998)

11. Vetter, J., Worley, P.: Asserting performance expectations. In: SC (2002)
12. Wen, T., Colella, P.: Adaptive Mesh Refinement in Titanium. In: IPDPS (2005)
13. Yelick, K., Semenzato, L., Pike, G., Miyamoto, C., Liblit, B., Krishnamurthy, A., Hilfin-

ger, P., Graham, S., Gay, D., Colella, P., Aiken, A.: Titanium: A high-performance Java
dialect. In: Workshop on Java for High-Performance Network Computing (1998).

Exploiting SIMD Parallelism
with the CGiS Compiler Framework

Nicolas Fritz�, Philipp Lucas�, and Reinhard Wilhelm

Universität des Saarlandes, 66041 Saarbrücken, Germany
{cage,phlucas,wilhelm}@cs.uni-sb.de

Abstract. Today’s desktop PCs feature a variety of parallel processing
units. Developing applications that exploit this parallelism is a demand-
ing task, and a programmer has to obtain detailed knowledge about the
hardware for efficient implementation. CGiS is a data-parallel program-
ming language providing a unified abstraction for two parallel processing
units: graphics processing units (GPUs) and the vector processing units
of CPUs. The CGiS compiler framework fully virtualizes the differences
in capability and accessibility by mapping an abstract data-parallel pro-
gramming model on those targets. The applicability of CGiS for GPUs
has been shown in previous work; this work presents the extension of the
framework for SIMD instruction sets of CPUs. We show how to overcome
the obstacles in mapping the abstract programming model of CGiS to
the SIMD hardware. Our experimental results underline the viability of
this approach: Real-world applications can be implemented easily with
CGiS and result in efficient code.

1 Introduction

Recent hardware development is leading from traditional core frequency increase
towards parallelism [3]. Even standard PCs feature parallelism on several levels of
granularity. Multiprocessor systems support a MPMD model, which distributes
tasks to different cores. GPUs (graphics processing units) [15] and SIMD units
of CPUs follow the SPMD paradigm. Exploiting this parallelism, however, is not
sufficiently supported by common programming languages, which are still tightly
coupled to the sequential computing model. Algorithms using SIMD instructions
are commonly written in assembly language or low level programming language
extensions (intrinsics) [22].

The CGiS system strives to open up the parallel programming capabilities
of commodity hardware to ordinary programmers. It raises the abstraction level
high enough, so that the developer is kept away from all hardware intricacies.
A CGiS program consists of parallel forall-loops iterating over streams of data
and sequential kernels called from those loops. The CGiS compiler framework
supports both CPUs and GPUs as targets, exploiting their characteristics auto-
matically. For GPUs this has been presented in [9]. The paper in hand focuses on

� In part supported by DFG grant WI576/10.

V. Adve, M.J. Garzarán, and P. Petersen (Eds.): LCPC 2007, LNCS 5234, pp. 246–260, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Exploiting SIMD Parallelism with the CGiS Compiler Framework 247

the SIMD back-end of the CGiS compiler generating code for Freescale’s AltiVec
and Intel’s SSE, and presents a number of transformations and optimizations.

Modern GPUs offer hundreds of floating point units, which can work in a SIMD
fashion on vectorial values or on any kind of scalar data [14]. Thus, GPUs can even
execute scalar operations in parallel, offering heterogenous parallelism. In contrast
to that, the SIMD units of PowerPCs and various generations of Intel Pentiums
have only up to three 4-way SIMD processing units. This means that GPUs offer
both SIMD parallelism in a single element and across a multitude of elements,
whereas only the element-wise parallelism is exploitable by SIMD CPUs.

CGiS offers two levels of explicit parallelism, large scale SPMD parallelism
by the iteration over streams and small scale SIMD parallelism by vectorial data
types. A CGiS back-end needs to map these parallelisms to the ones offered by
the target architecture. For GPUs this is a one-to-one mapping; for SIMD CPU
architectures, the back-end has to chose which parallelism opportunity to map
to the hardware features.

A method to map SPMD parallelism to the SIMD hardware is kernel flatten-
ing. This operation breaks down compound data into scalars to enable sensible
packing of new vectors for parallel execution. To ensure the preservation of the
program semantics, static program analyzes are used to guarantee the premises.
This also requires automatic reordering of the input data which can be done
locally to the routine or globally for all routines.

In many algorithms memory accesses dominate the computations. This makes
the overall performance dependent on the memory connection. Hardware devel-
opers incorporate caches to speed up the access, but computations on large data
sets make evictions inevitable. To make best use of the caches, a mechanism for
loop sectioning is integrated in our SIMD back-end. The iteration of the data
streams is adapted to the cache size and the stream layout.

The remainder of this paper is organized as follows. Section 2 gives a short
overview of the current SIMD instruction sets and Section 3 provides a more in-
depth look on CGiS, comparing it to related work. The SIMD back-end and its
optimizations are set forth in Section 4, and examples and experimental results
are presented in Section 5. Future work is discussed in Section 6, and Section 7
concludes the paper.

2 Hardware

The first SIMD instruction set in commercially successful desktop processors, the
Multimedia Extensions (MMX) [11], was introduced by Intel in 1997. MMX ex-
tended the core instruction architecture with eight 64-bit registers and provided
only integer instructions. It was followed by the Streaming SIMD Extensions
(SSE) [7] in 1999. The first version of SSE provided eight 128-bit registers and
a set of floating-point instructions. The SSE instruction set was successively
extended by introducing integer support and horizontal operations (SSE2 and
SSE3). SSE4 promises a broader connection to the SIMD processing unit as well
as more horizontal instructions to speed up common algorithms.

248 N. Fritz, P. Lucas, and R. Wilhelm

The PowerPC architecture was augmented with the Velocity Engine or Al-
tiVec [5,6] in 1999. It provides thirty-two 128-bit registers to hold vectors and
supports integers of various widths as well as floating-point data. In contrast
to SSE, AltiVec supports very powerful data reordering or permutation instruc-
tions, allowing arbitrary interchange of input vectors.

3 The CGiS Framework

CGiS [9,10] is a data-parallel language for GPUs and CPUs. The CGiS language
and the runtime system abstract the target in a uniform way. In particular, it
is invisible to the programmer on which target the generated code is executed.
CGiS is not intended to replace a programming language for a complete appli-
cation. Instead, a data-parallel algorithm can be expressed in CGiS and then
called as a simple subprogram of an application.

3.1 CGiS

Figure 1 shows the usage pattern of CGiS. A source code file is fed to the
compiler, which outputs code for the desired target (here: SIMD CPU code) and
code for interfacing with the main application. The programmer interacts only
with this interface code in a uniform way.

For an example of a CGiS program, see the code in Figure 2. It presents the rc5
cipher encryption [19] with a static number of 31 rounds. CGiS files are divided
into three sections. An INTERFACE section defines the global data of the program;
in this case, a one-dimensional stream of unspecified size of integer tuples (the
stream to be encrypted) and a field of 32 integer key pairs. A CODE section defines
the kernels operating in parallel on elements of streams. Here, the procedure rc5
operates on stream element AB. It is an inout parameter, meaning it is read and
written in the same iteration. The second parameter S is a reference to a stream,
denoted by <_>. The called procedure load looks up the i-th element of S and
stores it in S01. The suffixes .x and .y on vectorial values denote component-
selection: A vectorial value with a size of at most four can be treated as a struc-
ture with components x, y, z, w. The CONTROL section initiates a computation

Fig. 1. Using CGiS. Arrows denote in- and output, dotted lines denote linkage. The
filled rectangular nodes are user supplied code. The oval nodes are part of CGiS, and
the other code components are generated by the CGiS compiler.

Exploiting SIMD Parallelism with the CGiS Compiler Framework 249

PROGRAM rc5_encryption;

INTERFACE
extern in uint2 S<32>;
extern inout uint2 ABs<SIZE>; // The stream to be encrypted.

CODE
procedure encrypt(inout uint2 AB, in uint2 S<_>)
{
uint2 S01; uint i = 0;
load(S,i,S01); // Get key-pair at 0.
uint A = AB.x+S01.x, B = AB.y+S01.y;
while(i<31) {

i = i + 1;
load(S,i,S01); // Get key-pair at i.
A = ((A^B)<<<B) + S01.x; // <<< is a left-
B = ((B^A)<<<A) + S01.y; // rotation.

}
AB.x = A; AB.y = B;

}

CONTROL
forall(AB in ABs) encrypt(AB,S);

Fig. 2. CGiS encryption of a stream with 31 rounds of rc5. A stream element consists
of a pair of unsigned integers.

on streams. In this case, the kernel rc5 is invoked for the elements of the stream
ABs. The computations on the elements get scheduled in parallel (SPMD).

CGiS features a relatively standard, imperative programming language to
describe the kernels in the CODE section. It is based on C, but lacks pointers:
Arrays are always accessed with indices, and function outputs are implemented
with pass-by-value-result parameters. These restrictions are a consequence of
CGiS’ ancestry as a GPU programming language. Also stemming from this
are the native vectorial types and operations, special instructions for reordering
components and guarded executions. Element types are single-precision floating
point or signed or unsigned integer.

Streams can be accessed through read-write iterators, with relative and ab-
solute read accesses, and absolute write accesses. The kernels are scheduled by
a simple language featuring sequential specification of parallel executions in the
CONTROL section. The runtime system is responsible for synchronization and se-
quencing of memory accesses to ensure a well-defined semantics. The INTERFACE
section declares the interface to other CGiS programs and to the application:
The application passes pointers to the input data and receives the output data
through C functions generated for the interface code. The target remains hidden
in this approach: The main application uses the generated code as a black-box,
consuming streams of input data and producing streams of output data.

250 N. Fritz, P. Lucas, and R. Wilhelm

CGiS was originally deceived as a language for general-purpose computations
on GPUs [10,15]. As such, much of its syntax and semantics are owed to the hard-
ware peculiarities of GPUs. SIMD CPUs can also make use of floating point vec-
tors, but they lack the abundance of execution units. Therefore, a translation based
on the same kind of parallelism available on GPUs is bound to produce lackluster
results. From the two levels of parallelism mentioned above, SIMD parallelism on
vectors and SPMD parallelism on stream elements, CPUs lack the GPU’s large
parallelism of the second kind. Section 4 shows that, with appropriate transfor-
mation on the source code inside the compiler, data-parallel algorithms expressed
in CGiS can nevertheless also efficiently be executed on SIMD CPUs.

3.2 Related Work

Exploiting SIMD parallelism from standard C code is a complicated task. Com-
mon C compilers like gcc or icc are facing a multitude of problems both in
analyzing the input code and in mapping it efficiently to the restricted SIMD
hardware; many algorithms are still implemented by hand in assembly code or
intrinsics, or using prefabricated libraries [17,22]. CGiS features a stream pro-
gramming model, avoiding some of these problems and offering new opportuni-
ties to overcome others. The expressibility is restricted with respect to the full
possibilities of C code, but it allows easier exploitation of parallelism.

The CGiS SIMD back-end shares a set of common problems with other SIMD
code generation approaches. One of the major problems is data alignment, be-
cause SIMD hardware usually is limited to accessing 16-byte aligned addresses
[16]. Because CGiS operates solely on non-overlapping arrays (streams) with
indexed accesses, alignment analysis becomes easier and permutation operations
can be kept local. Also control flow prevents parallelization, and for SIMD tra-
ditional control flow conversions have to be employed [1,23].

Other problems are avoided by language design or have to be tackled differ-
ently. As explicit data parallelism is mandatory for CGiS programs, extensive
data-dependency analyses are obsolete. Specialized operations such as saturated
operators or bit rotation operation are common to multimedia applications. These
operations have to be reconstructed from C code by idiom recognition [17,18],
whereas they are present in CGiS. To utilize SIMD potential on scalar code, su-
perword level parallelism is able to recognize isomorphic operations on sequential,
scalar code [8,21]. CGiS offers small (up to four components) vectorial types and
componentwise operations, enabling the programmer to express isomorphic oper-
ations in their natural form. Exploiting SIMD parallelism from scalar code [13] is
handled by cross-kernel-parallelism due to a transformation called kernel flatten-
ing. Conversion between element types of different length is a severe problem in
C based approaches [22]; in CGiS, all data types are 32-Bit long.

4 The SIMD Back-End

This section deals with the transformations and optimizations which are neces-
sary for the SIMD back-end of the CGiS compiler.

Exploiting SIMD Parallelism with the CGiS Compiler Framework 251

The challenges in generating efficient SIMD code differ from the ones in gen-
erating GPU code. Increased performance compared to scalar execution can
only be achieved by exploiting vector parallelism. Each vector register of the
supported SIMD hardware is 128 bit wide and can contain 4 floating-point or
4 (signed or unsigned) integer values. Mapping the stream computation to this
hardware is hindered by the following issues:

– Misalignment and data layout. CGiS allows streams of arbitrary data ele-
ments allocated by standard allocation functions in the application. Because
data can only be accessed with 16-byte aligned loads1, in general, data must
be reordered at some point. Consider the example in Figure 2 which de-
scribes a CGiS function encrypting a stream of pairs of unsigned integers
with the rc5 encryption algorithm. With two integers per element, every odd
element is not aligned for SIMD hardware.2

The stream elements are compounds and the operations work on single
components. There is no efficient SIMD exploit when processing one or two
stream elements at a time as computations on the components are not uni-
form. Neither the data layout nor the alignment of the tuples match the
requirements for SIMD vectorization.

– Gathering operations. Accesses to the main memory of a CPU are inherently
slow. Thus, on-chip caches are employed to speed up the access to re-used
data. Apart from arbitrary stream lookups, the CGiS language allows stream
element loads or gathers relative to the element currently processed (neigh-
borhood operations). Depending on the organization of the stream data and
the shape of the accessed neighborhood, the CGiS compiler can adapt the
stream iterations to increase cache performance.

– Control flow. Vectorizing code with control flow structures requires code
transformation to ensure each of the stream elements processed in parallel
enters the correct control flow branch. As in traditional vectorization, this
is done by if- and loop-conversion and inlining.

4.1 Kernel Flattening

The main challenge in generating efficient SIMD code is data arrangement and
meeting the alignment requirements of data accesses. A solution to this alignment
and data layout problem is kernel flattening.

Kernel flattening is a code transformation on the intermediate language. It
processes a single kernel and splits all stream elements and variables into scalar
variables. This also includes operations on those variables: Every operation is
copied and executed on each former component of the variable. Figure 3 shows
the flattening operations applied to a simple CGiS procedure, transforming YUV
color values into RGB values. The parameters YUV and RGB and the constant
1 The unaligned loads supported by SSE2 severely impact execution time.
2 We assume that at least the first element of every stream processed is 16-byte aligned.

Another example of a stride-one stream where not every stream element is aligned
is the YUV-stream depicted in Figure 3.

252 N. Fritz, P. Lucas, and R. Wilhelm

procedure yuv2rgb(in float3 YUV, out float3 RGB)
{
RGB = YUV.x + [0, 0.344, 1.77] * YUV.y + [1.403, 0.714, 0] * YUV.z;

}

procedure yuv2rgb_f (in float YUV_x, in float YUV_y, in float YUV_z,
out float RGB_x, out float RGB_y, out float RGB_z)

{
float cy = 0.344, cz = 1.77, dx = 1.403, dy = 0.714;
RGB_x = YUV_x + dx * YUV_z;
RGB_y = YUV_x + cy * YUV_y + dy * YUV_z;
RGB_z = YUV_x + cz * YUV_y;

}

Fig. 3. The procedure yuv2rgb transforms YUV color values into RGB. As in common
GPU languages, scalar operands are replicated to match the number of components
of the target or operation. yuv2rgb_f is the result of the flattening transformation
applied to yuv2rgb. Each component becomes a single scalar variable or parameter
and all vector operations are replaced by scalar ones.

vectors are split into 3 scalar variables each. The assignment to RGB and the
computations are split as well.

The procedure resulting from kernel flattening can be executed in parallel.
After compound variables have been broken down to scalar ones, these can be
subjected to SIMD vectorization. Four consecutive elements for each scalar vari-
able stream can now be loaded into one vector register, and immediate constants
are replicated into a vector. Because the original data elements of the stream are
possibly ordered in tuples (e. g., the YUV-stream in Figure 3), data has to be
reordered during execution or beforehand. The SIMD back-end supports local
and global data reordering depending on the re-usability of the reordered data.
Whereas global reordering is basically a reordering in memory, local reordering
inserts code that reorders these elements in registers at the beginning of the
function and at the end. For the previous example the possible stream access
patterns are shown in Figure 4. Sequential execution accesses one YUV-triple per
iteration. Global reordering splits the YUV-stream into three streams. Thus, in
each iteration, four elements of each former component can be loaded into a vec-
tor register and processed. Local reordering takes the stream as it is and inserts
permutation operations at the start and the end of the flattened procedure.

Per default, the CGiS back-end uses local reordering, but the programmer can
force global reordering by annotations. Global data reordering requires input
stream data to be loaded before and output stream data to be stored after
execution. Thus, the higher reordering costs with respect to local reordering are
amortized only if the reordered stream is processed several times with gathers
and lookups.

Lookup and gather operations are split as well. In case of global reordering, the
gathers and lookups are straightforward, because only alignment has to be taken

Exploiting SIMD Parallelism with the CGiS Compiler Framework 253

Fig. 4. Streams can be reordered globally or locally. Global reordering copies the data
in memory before and/or after execution, depending on the data flow of the stream.
Local reordering uses SIMD permutations. The layout of the data in memory remains
unchanged. Different shades denote consecutively accessed data per iteration.

care of. As for local reordering, on gather operations the loaded and reorganized
data can be kept minimal as the offset from the current element is statically
known. On the other hand, data-dependent lookups result in four different scalar
loads and the reconstruction of a vector. With too many of these lookups the
benefit of vectorizing the function might get negated.

For the rc5 encryption, this means that the inout parameter AB is split into
an inout parameter AB_x and an inout parameter AB_y. All operations are
made scalar enabling SLP execution. Data reordering instructions are inserted
allowing stride-one access to AB_x and AB_y. From the perspective of data layout
and alignment, four elements can be processed in parallel. The lookup function
load only depends on the scalar i. With data-flow analysis it can be determined
that i is constant across all elements processed in parallel. CGiS allows the
user to annotate uniform variables to guide the compiler. Each of the parallely
processed elements wants to load the same value. So the desired vector can be
reconstructed from one SIMD load and one or two permutations.

4.2 Loop Sectioning

Many data parallel algorithms, especially in image processing, require the gather-
ing of nearby data elements. One example for such an image processing algorithm
is the Gaussian blur described in Section 5.2. CGiS supports gathering oper-
ations that let the programmer access stream elements relative to the current
position in the stream. When iterating over a two-dimensional stream column-
by-column or row-by-row, it is possible that data elements already loaded and
present in the data cache are evicted and have to be loaded again. To make
best use of the cached data, the CGiS compiler can adapt the iterations over
the stream dividing the field into smaller stripes that better match the cache
size and organization of the processor. This optimization was inspired by [2].

254 N. Fritz, P. Lucas, and R. Wilhelm

Fig. 5. The CGiS compiler can adapt the iteration order to increase cache hit rates
in gather operations. Blue (light) squares are cached elements, the black square is the
currently processed element and the red (dark) ones are the neighborhood accessed in
this iteration. The left picture shows row-by-row iteration. In the right picture stripe-
by-stripe is processed, showing the benefit of additional overlapping of cached data.

With the smaller width of the stripes, there is more overlapping in-between row
iteration.

This is possible only on architectures which allow a direct control of the iter-
ation order. As for example GPUs do not allow this detailed iteration control,
the GPU back-end of the CGiS compiler cannot make use of this optimization.

As an example, consider Figure 5. A two-dimensional field S is processed,
and for each element its 8 immediate neighbors are gathered. The blue (light)
squares are data elements that have been loaded in former iterations and are thus
present in the data cache. The currently iterated element is colored black, and
the gathered elements are red (dark). In the left part, the iteration sequence is
simply row-by-row. The right part shows the same field subdivided into smaller
stripes Si. Each Si is also processed row-wise. But with the reduced row width,
the cache hit rate is increased, because there is still data present in the cache
from the last processed row.

The size of the stripes is determined by the cache size and the memory re-
quirements as follows. To determine the dimension in which the stripes run, we
investigate the access pattern of the gather operations. The dimension which
gives rise to the most data accesses defines the run direction. We assume that
the two-dimensional stream is stored row-wise in memory. The stripes then run
column-wise. Iteration is row-wise inside the stripes. For each stream, o deter-
mines the maximum of iteration lines or rows crossed by the access pattern, e. g.,
in Figure 5 o is 3. o is the sum of maximum absolute offsets in stripe direction
plus one for the current line. For a given parallel kernel-execution k, the CGiS
compiler decides the width of the stripes Sk from the cache size C, the cache
line size l and the size of the stream elements read and written. (Different archi-
tectures with different cache sizes are selected at compile-time.) δ is a constant
number that represents the local data that is needed in each iteration such as
intermediates and other stack data. Assume that k accesses stream elements with

Exploiting SIMD Parallelism with the CGiS Compiler Framework 255

an element size of ai and the gathers for ai cross oi lines. These parameters are
statically known and result in a simple heuristic for computing the stripe width:

Sk =
⌊
(C − δ)/(

∑
oi · ai)

⌋
l
.

	
l rounds down to the nearest multiple of l. Sk does not need to be constant
across a whole program but is adapted to each specific kernel execution.

Should the size of the field not match a multiple of the stripe width, the
remaining elements are processed by normal iteration.

4.3 Control Flow Conversion

The three main control flow constructs of CGiS are procedure calls, conditionals
and loops. Breaks are represented as modifying the loop control variable, so that
each loop has exactly one exit. All transformations of the control flow conversion
are executed on the intermediate representation of the CGiS program.

By default, calls are fully inlined in the SIMD back-end, although it is possible
to force separate functions. We found that generating true calls increases the
runtime of the application. Most parameters are present in vector registers, and
passing those as arguments induces additional stores and loads.

If-conversion is the traditional way to convert control-dependencies into data-
dependencies. A mask is generated for the condition. The execution of each state-
ment in the conditional body is guarded by that mask [23]. In CGiS, the masks
are the results of vector compare operations. These component-wise operations
yield a vector that contains all 0s at an element if the comparison failed for
that element, all 1s otherwise. Because current SIMD hardware does not feature
guarded assignments, the Allen-Kennedy algorithm of [23] has to be adapted in
the following way.

Let I be a basic block containing an if-statement with condition CI and its
associated mask MI . For simplicity, we consider only a simple conditional body,
with one block TI in the true-branch and one block FI in the false-branch. The
control flow join is denoted JI . Let LI be the set of variables live at JI , WT the
set of variables written in TI and WF is the set of variables written in FI . The
algorithm which inserts the additional operations required for the if-conversion
is given in pseudo-code in Figure 6.

During the if-conversion phase, for each I the sets ST and SF are determined.
For each control flow branch, copies of the variables written and live after the
branch are inserted at the beginning of the respective branch. After the end of
a branch, select instructions (like φ-functions from SSA [12]) are inserted which
select the new value for the written variable depending on the generated mask.

The conversion of loops is pretty straight forward. For the loop condition,
a mask is generated as well, and the loop is iterated as long as the mask is
not completely 0 (signifying that all elements or the SIMD-tuple have finished
iteration). If the mask is completely 0, then the loop can be exited.

Conversion of nested control flow statements is also supported. When the
mask of a condition is generated for a nested statement, it is always combined
with the mask of the control flow statement via binary and.

256 N. Fritz, P. Lucas, and R. Wilhelm

Use l i v e v a r i a b l e s a n a l y s i s to determine LI

Use reach ing d e f i n i t i o n s an a l y s i s to determine WT and WF

Build i n t e r s e c t i o n s ST = WT ∩ LI and SF = WF ∩ LI

Foreach vT ∈ ST

i n s e r t vT
′ = vT at the beginn ing o f TI

i n s e r t select(vT , vT
′, MI) at the end o f TI

Foreach vF ∈ SF

i n s e r t vF
′ = vF at the beginn ing o f FI

i n s e r t select(vF
′, vF , MI) at the end o f FI

Fig. 6. Pseudo code for additional insertion of copies and select operations used in
if-conversion

5 Examples and Evaluation

Three data parallel algorithms from different application domains will demon-
strate the fitness of the SIMD back-end to the CGiS framework. Though all
naturally parallel, each of those algorithms requires different optimization to
run efficiently. Thus, they serve as representatives for larger categories of similar
applications.

The two target platforms were a Freescale PowerPC G5, 1.8 GHz, running
under Mac OSX, and an Intel Core 2 Duo 1.83 GHz running under Linux. The
generated intrinsics code was compiled with gcc 4.0.1. Figure 7 shows the ag-
gregation of the experiments for both hardware platforms. Speedup factors for
SIMD only differ in the rc5 example as the SSE hardware does not support
rotates or register-dependent shifts.

5.1 rc5 Encryption

rc5 [19] is a block cipher encryption that works on a stream of integer tuples.
Each tuple gets modified by rotating and binary xor over a certain number of
rounds. A parallel implementation of rc5 encryption requires the data to be
reordered. Global data reordering via memory copy is not a valid option as it
increases overall computation time drastically and does not amortize by the
gain in computation speed. The alternative is local data reordering and is a
automatically done by kernel flattening. For the tests, the message length to be
encrypted is between 64k and 320k integers.

Figure 8.a holds the results of the generated SSE code. Because the Streaming
SIMD Extensions do not support vector register dependent shifts or rotates,
these operations must be done by the ALU, forcing data to go through memory
twice. This has a severe impact on the computation time. The average increase
of SIMD with respect to scalar code is about 20%. The results of the AltiVec
implementation are shown in Figure 8.b. For all input sets the speedup is about
400%. As gcc did not recognize the shift patterns as rotates, it did not use the
scalar rotate of the PowerPC, decreasing the scalar performance.

Exploiting SIMD Parallelism with the CGiS Compiler Framework 257

 0

 20

 40

 60

 80

 100

 120

 140

 160

size 4size 3size 2size 1size 0

pe
rc

en
ta

ge
 o

f s
ca

la
r

co
m

pu
ta

tio
n

tim
e

sets of input data

AltiVec rc5
AltiVec gaussian
AltiVec mandelbrot
SSE rc5
SSE gaussian
SSE mandelbrot

Fig. 7. Execution times of AltiVec and SSE hardware relative to scalar execution of
PowerPC and Core 2 Duo. While Mandelbrot and Gaussian blur perform equally well
on both architectures, rc5 is significantly slower on the Core 2 Duo due to the missing
hardware rotation.

5.2 Gaussian Blur

Gaussian blur is an image processing algorithm to produce a blurring effect. For
each pixel, its color and the colors of its neighbors are weighted and combined
into a new color. Here the memory accesses strongly dominate computations.
Our image data is stored in RGBA format, of which only the RGB values are
considered. To increase performance in the gathering operations, cache sensitive
iteration tries to make best use of the data already present in the cache. For the
tests, an input image has been scaled, doubling the image size per test case.

The SSE results in Figure 8.c do not show large improvement over the scalar
implementation. The increased memory accesses together with the weak mem-
ory connection of the SSE unit thwart any performance gain by the parallel
execution. The execution times on AltiVec hardware in Figure 8.d show an im-
provement of roughly 50% and scale well with the size of the inputs.

5.3 Mandelbrot Set

Computing the Mandelbrot set is a well-known, computationally heavy algo-
rithm. For a point z ∈ C in the complex plane, the sequence z0 = z, zn = z2

n−1+z
is computed until |z2

n| � 2 for some n or a maximal iteration count n′ is reached.
Afterwards, the final iteration count n is mapped onto a color.

Parallelization of this algorithm is only possible with control flow conversion.
For this example, both SSE and AltiVec implementation show speedups of fac-
tor 2 (Figure 8.e–f) across all inputs. While the SSE instruction set offers the

258 N. Fritz, P. Lucas, and R. Wilhelm

 0

 10

 20

 30

 40

 50

 60

 70

320k256k192k128k64k

C
om

pu
ta

tio
n

T
im

e
in

 m
s

Length of message in chars

Scalar CPU
SSE

 0

 10

 20

 30

 40

 50

 60

320k256k192k128k64k

C
om

pu
ta

tio
n

T
im

e
in

 m
s

Length of message in chars

Scalar CPU
AltiVec

(a) rc5 on SSE (b) rc5 on AltiVec

 0

 50

 100

 150

 200

 250

1280x960960x640640x480480x320320x240

C
om

pu
ta

tio
n

T
im

e
in

 m
s

Image size in square pixel

Scalar CPU
SSE

 0

 100

 200

 300

 400

 500

1280x960960x640640x480480x320320x240

C
om

pu
ta

tio
n

T
im

e
in

 m
s

Image size in square pixel

Scalar CPU
AltiVec

(c) Gaussian blur on SSE (d) Gaussian blur on AltiVec

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

512k256k128k64k32k

C
om

pu
ta

tio
n

T
im

e
in

 m
s

Size of Mandelbrot Set

Scalar CPU
SSE

 0

 1000

 2000

 3000

 4000

 5000

512k256k128k64k32k

C
om

pu
ta

tio
n

T
im

e
in

 m
s

Size of Mandelbrot Set

Scalar CPU
AltiVec

(e) Mandelbrot on SSE (f) Mandelbrot on AltiVec

Fig. 8. Performance evaluation of three test sets on SIMD CPUs. The left column
shows the computation times on SSE, the right one the computation times on AltiVec.

possibility to read the results of a compare directly to scalar hardware, for Al-
tiVec writing of control register bits must be enabled and conditional jumps
depending on those control bits are introduced.

6 Future Work

The SIMD back-end of the CGiS compiler is still under development. The main
focus up to this point was to generate efficient code, i. e., faster than scalar
code, for suitable applications. The next goal is the refinement of the existing
optimizations. More program analyzes and better heuristics should replace the
current heuristics.

Exploiting SIMD Parallelism with the CGiS Compiler Framework 259

Although intrinsics are a comfortable way of generating SIMD code, they have
limitations. The conditional jumps using the control register of the PowerPC
have to be inserted via inline assembly resulting in inefficient code. Further-
more, with pure assembly code emittance the compiler has more control over
register allocation, which is imperative on the SSE architecture. This also en-
ables the optimization of register caching for gather operations [20]. Compiling
directly to assembly would offer also easy access to other processor features. For
example, conditionals in loops can be optimized by introducing flags to avoid
the generation of the masks for the if-statement, should there be no else-branch
associated with the if. Also, we plan to extend the compiler to the Cell processor,
which offers parallelism on several kinds [4]. We believe that the CGiS model
can efficiently be mapped to the parallelisms allowed by the Cell processor.

7 Conclusion

This paper presents the SIMD back-end of the CGiS compiler framework in its
current state. Generating efficient SIMD code for data parallel algorithms is a
demanding task as many restrictions like data layout, control dependencies and
other characteristics of the hardware avoid vectorization.

We introduce the program transformation of kernel flattening combined with
local data reordering to solve the problem of data layouts that are not suitable
for stream processing otherwise. On memory dominated algorithms, we try to
increase performance by making best use of data caches by adapting the iteration
sequence. Control flow is straightened by full if- and loop-conversion offering the
possibility to parallelize functions with control dependencies. The experimen-
tal results show the viability of this approach. Though the number of examples
is not exhaustive, the applications each stand for a whole category of similar
applications in the field of encryption, image processing and mathematical cal-
culations.

References

1. Allen, R., Kennedy, K.: Optimizing Compilers for Modern Architectures. Morgan
Kaufmann, San Francisco (2002)

2. Coleman, S., McKinley, K.S.: Tile size selection using cache organization and data
layout. In: Proceedings of PLDI, pp. 279–290 (1995)

3. Culler, D.E., Singh, J.P., Gupta, A.: Parallel Computer Architecture: A Hard-
ware/Software Approach. Morgan Kaufmann, San Francisco (1999)

4. Eichenberger, A.E., O’Brien, K., O’Brien, K., Wu, P., Chen, T., Oden, P.H., Prener,
D.A., Shepherd, J.C., So, B., Sura, Z., Wang, A., Zhang, T., Zhao, P., Gschwind,
M.: Optimizing compiler for a cell processor. In: Proceedings of PACT (2005)

5. Freescale. AltiVec Technology Programming Interface Manual. ALTIVECPIM/D
06/1999 Rev. 0 (June 1999)

6. Freescale. AltiVec Technology Programming Environments Manual. AL-
TIVECPEM/D 04/2006 Rev. 3 (April 2006)

7. Intel. Intel 64 and IA-32 Architectures Optimization Reference Manual (May 2007)

260 N. Fritz, P. Lucas, and R. Wilhelm

8. Larsen, S., Amarasinghe, S.: Exploiting superword level parallelism with multime-
dia instruction sets. Technical Report LCS-TM-601, MIT Laboratory for Computer
Science (November 1999)

9. Lucas, P., Fritz, N., Wilhelm, R.: The CGiS compiler—a tool demonstration. In:
Mycroft, A., Zeller, A. (eds.) CC 2006. LNCS, vol. 3923, pp. 105–108. Springer,
Heidelberg (2006)

10. Lucas, P., Fritz, N., Wilhelm, R.: The development of the data-parallel GPU pro-
gramming language CGiS. In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A.,
Dongarra, J. (eds.) ICCS 2006. LNCS, vol. 3994, pp. 200–203. Springer, Heidelberg
(2006)

11. Mittal, M., Peleg, A., Weiser, U.: MMX technology architecture overview. Intel
Technology Journal Q3(12) (1997)

12. Muchnick, S.S.: Advanced Compiler Design and Implementation. Morgan Kauf-
mann, San Francisco (1997)

13. Nuzman, D., Rosen, I., Zaks, A.: Auto-vectorization of interleaved data of simd.
In: Proceedings of PLDI (2006)

14. NVIDIA. CUDA Programming Guide Version 0.8 (February 2007)
15. Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A.E.,

Purcell, T.J.: A survey of general-purpose computation on graphics hardware. Com-
puter Graphics Forum 26(1), 80–113 (2007)

16. Pryanishnikov, I., Krall, A., Horspool, R.N.: Compiler optimizations for processors
with SIMD instructions. Software—Practice & Experience 37(1), 93–113 (2007)

17. Ren, G., Wu, P., Padua, D.: An empirical study on the vectorization of multimedia
applications for multimedia extensions. In: IPDPS (2005)

18. Ren, G., Wu, P., Padua, D.A.: A preliminary study on the vectorization of mul-
timedia applications for multimedia extensions. In: Rauchwerger, L. (ed.) LCPC
2003. LNCS, vol. 2958, pp. 420–435. Springer, Heidelberg (2003)

19. Rivest, R.L.: The RC5 encryption algorithm. In: Practical Cryptography for Data
Internetworks. IEEE Computer Society Press, Los Alamitos (1996)

20. Shin, J., Chame, J., Hall, M.W.: Compiler-controlled caching in superword register
files for multimedia extension architectures. In: Proceedings of PACT, pp. 45–55
(2002)

21. Tenllado, C., Piñuel, L., Prieto, M., Catthoor, F.: Pack transposition: Enhancing
superword level parallelism exploitation. In: Proceedings of Parallel Computing
(ParCo), pp. 573–580 (2005)

22. Wu, P., Eichenberer, A.E., Wang, A., Zhao, P.: An integrated simdization frame-
work using virtual vectors. In: Proceedings of the 19th Annual International Con-
ference on Supercomputing (ICS), pp. 169–178 (2005)

23. Zima, H.P., Chapman, B.: Supercompilers for Parallel and Vector Computers. ACM
Press, New York (1990)

V. Adve, M.J. Garzarán, and P. Petersen (Eds.): LCPC 2007, LNCS 5234, pp. 261–275, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Critical Block Scheduling: A Thread-Level Parallelizing
Mechanism for a Heterogeneous Chip Multiprocessor

Architecture

Slo-Li Chu

Department of Information and Computer Engineering,
Chung Yuan Christian University, Chung-Li, Taiwan, R.O.C.

slchu@cycu.edu.tw

Abstract. Processor-in-Memory (PIM) architectures are developed for high-
performance computing by integrating processing units with memory blocks
into a single chip to reduce the performance gap between the processor and the
memory. The PIM architecture combines heterogeneous processors in a single
system. These processors are characterized by their computation and memory-
access capabilities. Therefore, a novel mechanism must be developed to iden-
tify their capabilities and dispatch the appropriate tasks to these heterogeneous
processing elements. Accordingly, this paper presents a novel parallelizing
mechanism, called Critical Block Scheduling to fully utilize all of the heteroge-
neous processors in the PIM architecture. Integrated with our thread-level paral-
lelizing system, Octans, this mechanism decomposes the original program into
blocks, produces corresponding dependence graph, creates a feasible execution
schedule, and generates corresponding threads for the host and memory proces-
sors. The proposed Critical Block Scheduling not only can parallelize programs
for PIM architectures but also can apply on other Multi-Processor System-on-
Chip (MPSoC) and Chip Multiprocessor (CMP) architectures which consist of
multiple heterogeneous processors. The experimental results of real benchmarks
are also discussed.

Keywords: Chip Multiprocessor (CMP), Processor-in-Memory, Critical Block
Scheduling, Octans.

1 Introduction

In current high-performance computer architectures, the processors run many times
faster than the computer's main memory. This performance gap is often referred to as
the Memory Wall. This gap can be reduced using the System-on-a-Chip or Chip Multi-
processor [18] strategies, which integrates the various processors and memory on
a single chip. The rapid growth in silicon fabrication density has made this strategy
possible. Accordingly, many researchers have addressed integrating computing logic/
processing units and high density DRAM on a single die [9][11][12][14][15] [17] [18].
Such architectures are also called Processor-in-Memory (PIM), or Intelligent RAM
(IRAM).

262 S.-L. Chu

Integrating DRAM and computing elements on a single chip generates PIM archi-
tecture with several desirable characteristics. First, the processors are heterogeneous
for their purpose. Second, instead of traditional off-chip communication, the on-chip
communication between processor-to-processor and processor-to-memory are very
wide and fast. Third, eliminating off-chip drivers reduces the power consumption and
latency [17].

This class of architectures constitutes a hierarchical hybrid multiprocessor envi-
ronment by the host (main) processor and the memory processors. The host processor
is more powerful but has a deep cache hierarchy and higher latency when accessing
memory. In contrast, memory processors are normally less powerful but have a lower
latency in memory access. The main problems addressed here concern the method for
dispatching suitable tasks to these different processors according to their characteris-
tics to reduce execution times, and the method for partitioning the original program to
execute simultaneously on these heterogeneous processor combinations.

Since the mechanisms of partitioning and scheduling for heterogeneous multi-
computers are classical NP-Hard problems, many researches propose their mecha-
nisms for distributed-memory parallel computers. Opportunistic Load Balancing
algorithm assigns each task, in arbitrary order, to the next available machine, regard-
less of the task's expected execution time on that machine [2]. Min-min algorithm
minimizes the completion time for each task is computed for all machines. The newly
mapped task is removed, and the process repeated until all tasks are mapped [2].
These methods are focus on how to reduce the communication cost of the parallel
program. However, in PIM architecture, the communication cost is not the most sig-
nificant factor of overall performance. Hence we veer to thread-level parallelizing
mechanisms. Cintr et al. [6] present a architectural support thread-level parallelization
framework, which can obtain more potential parallelism by their speculative thread-
level parallelizing mechanism with hardware support, especially for the modified CC-
NUMA architecture. Arora et al. [3], Zhou et al. [21], and Agrawal et al. [1] propose
their mechanisms to dynamically schedule the threads in the thread queue to reduce
memory access cost and improve cache locality. These mechanisms improve the ca-
pabilities of thread scheduler of the targeted operating system, but can not apply on
parallelizing compiler for static scheduling. Llosa, et al. [13] propose a software pipe-
lining mechanism, called Swing Modulo Scheduling (SMS), to partition iteration
spaces of loops according to their dependence graph. This algorithm provides itera-
tion-based mechanism that can improve the potential parallelism of the loops and
reduce the usage of registers. It is also adopted in GNU Compiler Collection (GCC)
Version 4.0. However SMS focuses on scheduling iterations of given loops but not
restructure whole program. It isn’t suitable for parallelizing program and generating
corresponding threads for different heterogeneous processors. Therefore we have to
consider other mid-grained approach instead of traditional fine-grained mechanism
based on iteration analysis.

From the aspect of compilation for PIM architectures, previous approaches [8] [10]
concentrate on instruction-level parallelization and loop vectorization to increase
speedup, rather than on the figure out the capability difference between the host and
memory processors. However, such approaches do not exploit the real advantages of
PIM architectures. Accordingly we design a thread-level parallelization system,

 Critical Block Scheduling 263

Octans, which integrates statement splitting, weight evaluation and a scheduling
mechanism. The original PSS scheduling [5] mechanism focuses on a simplified con-
figuration of PIM architecture that only consists one-P.Host and one-P.Mem proces-
sors. Since PSS scheduling can not deal with multiple P.Mem processors and fully
utilizes all heterogeneous computing resources, we design a new mechanism, Critical
Block Scheduling, to generate a superior execution schedule to fully utilize all hetero-
geneous processors in the PIM architecture. A weight evaluation mechanism is estab-
lished to collect characteristics of varied and estimate a precise execution time then
generate a normalized value, called weight. The Octans system can automatically
analyze the sequential program, partition program into several blocks, determine the
weights of each block, produce a good executing schedule, and finally generate paral-
lel threads for execution on the host and memory processors accordingly.

The rest of this paper is organized as follows: Section 2 introduces the PIM archi-
tecture. Section 3 describes our Octans system and the Critical Block Scheduling
algorithms. Section 4 presents experimental results. Conclusions are finally drawn in
Section 5.

2 The Processor-in-Memory Architecture

Fig. 1 depicts the organization of the PIM architecture evaluated in this study. It con-
tains an off-the-shelf processor, P.Host, and four PIM chips. The PIM chip integrates
one memory processor, P.Mem, with 64 Mbytes of DRAM. The techniques presented
in this paper are suitable for the configuration of one P.Host and multiple P.Mems,
and can be extended to support multiple P.Hosts.

Fig. 1. Organization of the PIM architecture

264 S.-L. Chu

Table 1. Parameters of the PIM architecture

P.Host P.Mem Bus & Memory
Working Freq: 800 MHz Working Freq: 400 MHz Bus Freq: 100 MHz
Dynamic issue Width: 6 Static issue Width: 2 P.Host Mem RT: 262. 5 ns
Integer unit num: 6 Integer unit num: 2 P.Mem Mem RT: 50. 5 ns
Floating unit num: 4 Floating unit num: 2 Bus Width: 16 B
FLC_Type: WT FLC_Type: WT Mem_Data_Transfer: 16
FLC_Size: 32 KB FLC_Size: 16 KB Mem_Row_Width: 4K
FLC_Line: 64 B FLC_Line: 32 B
SLC_Type: WB SLC: N/A
SLC_Size: 256 KB
SLC_Line: 64 B
Replace policy: LRU
Branch penalty: 4 Branch penalty: 2
P.Host_Mem_Delay: 88 P.Mem_Mem_Delay: 17

* FLC stands for the first level cache, SLC for the second level cache, BR for branch, RT for round-trip latency
from the processor to the memory, and RB for row buffer.

Table 1 lists the main architectural parameters of the PIM architecture. P.Host is a
six-issue superscalar processor that allows out-of-order execution and runs at
800MHz, while P.Mem is a two-issue superscalar processor with in-order capability
and runs at 400MHz. There is a two-level cache in P.Host and a one-level cache in
P.Mem. P.Mem has lower memory access latency than P.Host since the former is
integrated with DRAM. Thus, computation-bound codes are more suitable for running
on the P.Host, while memory-bound codes are preferably running on the P.Mem to
increase efficiency.

The PIM chip is designed to replace regular DRAMs in current computer systems,
and conform to a memory standard that involves additional power and ground signals
to support on-chip processing. One such standard is Rambus [7], so the PIM chip is
designed with a Rambus-compatible interface. The private interconnection network of
the PIM chips is also provided.

3 The Octans System

Most current parallelizing compilers focus on the transformation of loops to execute
all or some iterations concurrently, in a so-called iteration-based approach. This ap-
proach is suited to homogeneous and tightly coupled multi-processor systems. How-
ever, it has an obvious disadvantage for heterogeneous multi-processor platforms
because iterations have similar behavior but the capabilities of heterogeneous proces-
sors are diverse. Therefore, a different approach is adopted here, using the statements
in a loop as a basic analysis unit, called statement-based approach, to develop the
Octans system.

Octans is an automatic parallelizing compiler, which partitions and schedules an
original program to exploit the specialties of the host and the memory processor. At
first, the source program is split into blocks of statements according to dependence
relations [5]. Then, the Weighted Partition Dependence Graph (WPG) is generated,
and the weight of each block is evaluated. Finally, the blocks are dispatched to either
the host or the memory processors, according to which processor is more suitable for

 Critical Block Scheduling 265

Threads
for P. Mem

Block Execution Order Analysis

Block Weight Evaluation

Code Generator

Weight
Table

Threads
for P. Host

Source
Program

Dependence
Analysis

Statement
Splitting

WPG Graph
Generation

Statement Splitting
Dependence
Analysis

Statement
Splitting

WPG Graph
Generation

Statement Splitting

Pair-Selection
Scheduling

(for 1-P.Host 1-P.Mem)

Critical Block
Scheduling

(for 1-P.Host n-P.Mem

User
Constraints

Fig. 2. The sequence of compiling stages in Octans

executing the block. The major difference between Octans and other parallelizing
systems is that it uses a statement rather than an iteration as the basic unit of analysis.
This approach can fully exploit the characteristics of statements in a program and
dispatch the most suitable tasks to the host and the memory processors. Fig. 2 illus-
trates the organization of the Octans system.

3.1 Statement Splitting and WPG Construction

Statement Splitting splits the dependence graph by Node Partitioning as introduced in
[5]. WPG Construction constructs the Weighted Partition Dependence Graph (WPG),
to be used in the subsequent stages of Weight Evaluation, Wavefront Generation and
Schedule Determination.

The definitions relevant to Statement Splitting are introduced as below.

Definition 1 (Loop Notation)
A loop is denoted by L = (i1 , i2 , …. in)(s1 , s2 , …. sk), where ij, 1≤j≤n, is a loop
index, and sk, 1≤k≤d, is a body statement which may be an assignment statement or
another loop. ■

Definition 2 (Node Partition ∏)
For a given loop L on the dependence graph G, we define a node partition Π for the
statements set { s1 , s2 , …. sd} in such a way that sk and sl, 1≤k≤d, 1≤l≤d, k≠ l , are in
the same block (cell) πi of the partition Π if and only if sk Δ sl and sl Δ sk where Δ is an
indirect data dependence relation.

266 S.-L. Chu

On the partition Π={π1,π2 ,…,πn}, we define partial ordering relations α, α^, and αo
as follows.

For i ≠ j:
1) πi α πj iff there exist sk ∈ πi and sl ∈ πj such that sk δ sl , where δ is the true

dependence relation .
2) πi α^πj iff there exist sk ∈ πi and sl ∈ πj such that sk δ^ sl, where δ^ is the anti

dependence relation.
3) πi αoπj iff there exist sk ∈ πi and sl ∈ πj such that sk δo sl, where δo is the out-

put dependence relation. ■

Based on the definition, the statements form a block (cell) πi in the partition Π if and
only if there is a directed dependence cycle among the statements. Two blocks have a
true/anti/output dependence if and only if two statements, one in each block, exist a
true/anti/output dependence.

Definition 3 (Weighted Partition Dependence Graph)
Given a node partition Π defined in Definition 2, we define a weighted partition de-
pendence graph WPG(B,E) as follows with B denoting the set of nodes and E denot-
ing the set of edges. For each πi∈Π, there is a corresponding node bi (Ii , Si , Wi , Oi)
∈ B, where Ii denotes the set of loop indices in block πi; Si represents the set of state-
ments in block πi; Wi is the weight of block πi in the form of Wi (PH,PM) with PH and
PM being the weights (i.e., the expected execution time) for the P.Host and P.Mem,
respectively; and Oi is the execution order for block πi. There is an edge eij∈E from bi
to bj if bi and bj have dependence relations α, α^, and αo defined in Definition 1.

These dependence relations are respectively denoted by ,⎯ →⎯ ⎯→⎯anti
, and ⎯→⎯ O

.
 ■

Based on these three definitions, we propose a Statement Splitting algorithm (Algo-
rithm 1) to partition the loops:

Algorithm 1. (Statement Splitting Algorithm)
Given a loop L = (i1, i2, …. in) (s1, s2, …. sd)
Step 1: Construct dependence Graph G by analyzing subscript expressions and index pat-

tern by using Polaris [4].
Step 2: Establish a node partition Π on G as defined in Definition 2. If there are large

blocks caused by control dependence relations, convert control dependence into
data dependence first [5], and then partition the dependence graph.

Step 3: On the partition Π, establish a weighted partition dependence graph WPG(B,E)
defined in Definition 3.

3.2 Weight Evaluation

Two approaches to evaluating weight can be taken. One is to predict the execution
time of programs by profiling the dominant parts. The other considers the operations
in a statement and estimates the program execution time by looking up an operation
weight table [20]. The former method called code profiling may be more accurate, but
the predicted result cannot be reused; the latter called code analysis can determine
statements for suitable processors but the estimated program execution time is not
sufficiently accurate. Hence, the Self-Patch Weight Evaluation scheme was designed

 Critical Block Scheduling 267

Algorithm 2. (Critical Block Scheduling Algorithm)

[Input]
WPG=(P,E): original weighted partition dependence graph after weight is determined.

[Output]
An critical block execution schedule CPS, where CPS = {CPS1, CPS2, …,CPSi}. CPSi

={CPi, IWFi} where CPi = {Processor(ba)} where processor is PH or PM . IWFi

={PH(ba), PM1(bb), PM2(bc),…} means that in Inner Wavefront i, PH(ba) means that
block ba will be assigned to P.Host, PM1(bb) means that blocks bb will be assigned to
P.Mem1, PM2(bc) means that blocks bc will be assigned to P.Mem2.

[Intermediate]
W: a working set of nodes ready to be visited.
EO_temp: a working set for execution order scheduling.
iwf_temp: a working set for Inner Wavefront scheduling.
max_EO: the maximum number of execution order.
min_pred_O(bi): the minimum execution order for all bi’s predecessor blocks.
max_pred_O(bi):the maximum execution order for all bi’s predecessor blocks.
min_succ_RO(bi):the minimum execution order for all bi’s successor blocks.
max_succ_RO(bi):the maximum execution order for all bi’s successor blocks.
PHW(bi): the weight of bi for P.Host.
PMW(bi): the weight of bi for P.Mem.
Ranku(bi): the trace up value of bi used for finding CP
Rankd(bi): the trace down value of bi used for finding CP

[Method]
Step 1: For each block of the WPG, initializes the execution order, obtains the weights of

P.Host and P.Mem by using the weight evaluation mechanism.
Step 2: Travel down all blocks of the WPG to determine its rankd which is the maximal

rankd of the parent blocks, add itself P.Mem weight and increase its execution or-
der according to the maximal execution order of its parent blocks.

Step 3: Travel up all block to determine the ranku by current block’s P.Mem weight plus
the max of children block’s ranku.

Step 4: Travel all block find out the critical block that ranku + rankd equal to the rankd of
the starting block, and then append the block into CP_temp and its order into
CP_O.

Step 5: In CP_temp, when a critical block’s PHW is less than PMW, assign it to PH, oth-
erwise assign it to PM1. Append the block into CPk, where k is CP_O of the
block.

Step 6: Split all block to subset by CP_O, the subset doesn’t include the critical block,
and then perform each subset by follow step.
6.1 Split subset to new subset iwf_temp by order number.
6.2 Check the PH_Used and PM1_Used between CP_O for each iwf_temp.
6.3 Sort iwf_temp in decreasing order by the PMW.
6.4 If the PH_Used of iwf_temp is false then find the minimal PHW block to set

PH tag.
6.5 Other block of iwf_temp set PMk and append to IWFi.

Step 7: Append CPi and IWFi to CPSi set, and then append all CPSi to CPS set to gener-
ate the execution schedule.

Step 8: Perform each IWFi by follow steps to modify the execution schedule to fit the
limitation of PM number.
8.1 Sort IWF in decreasing order by the block’s weight.
8.2 If the PH_Used of IWF is false then find the minimal load of PH + PHW and

set it to PH and add the PMW of block to PH load.
8.3 Find the PM with minimal load then reassign the block to it.
8.4 Repeat Step 8.3 until all blocks of IWF is done.

268 S.-L. Chu

to combine the benefits of both approaches. It integrates these two approaches to-
gether by analyzing code and searching weight table first to estimate the weight of a
block. If the block contains unknown operations, the patch (profiling) mechanism is
then activated to evaluate the weights of unknown operations. The obtained operation
weights are added into the weight table for next look-up. For a detailed description of
this scheme, please refer to [5].

3.3 The Critical Block Scheduling Mechanism

Here we propose the Critical Block Scheduling mechanism to achieve an optimal
schedule for utilizing all of the memory processors in PIM architecture. At first, the
redundancy and synchronization between processors are critical factors that affect the
performance of task scheduling for multiprocessor platforms. A critical block mecha-
nism is used to minimize the frequency of synchronization. Then the WPG is then parti-
tioned into several Sections according to the critical blocks and the dependence relations
between these nodes. In a Section, the blocks are partitioned into several Inner Wave-
fronts in the following stages. Finally, the execution schedule for all P.Host and P.Mems
is obtained. If the number of occupied memory processors exceeds the maximum num-
ber of processors in the PIM configuration, then the execution schedule will be modified
accordingly. Algorithm 2 presents the main steps of this scheduling mechanism.

The algorithm includes eight major steps. In Step 1, the algorithm initiate the nec-
essary variables and determine the P.Host and P.Mem weights of each blocks deter-
mined by the weight evaluation mechanism.

This algorithm figures out the critical nodes to partition WPG into Sections, so the
critical blocks must be determined. Then the attributes, randu and rankd, of block bi in
WPG are defined by the following equations.

))((max)()(
)(

ju
bsuccb

iiu brankbPMWbrank
ij ∈

+=

)}()({max)(
)(

jjd
bpredb

id bPMWbrankbrank
ij

+=
∈

Here, succ(bi) and pred(bi) represent all of the successors and predecessors of bi,
respectively.

The critical block is defined as the following equation.

A block bi is critical block, if and only if randu(bi) + rankd(bi) = randu(bs), where bs
is the start block of the WPG, and bi is called the critical block.

According to the above definitions, the critical block can be determined by Step 2
to Step 4. Step 2 determines the rankd and the execution order of each block. In Fig.3
the randu of b1 is zero and PWM(b1) is 2, that we can determine the rankd of b2…b6
are 2. The execution order O is the max execution order O increase. By this way we
can determine the rankd and the execution order of each block. Step 3 determines
therandu of each block. The randu determine by the max rankd of child block add the
PWM of current block. Then, the algorithm determines which blocks are critical
blocks in Step 4. In Fig.3 we can find the rankd +randu of {b2,b15,b21,b29} equal to
the randu of b1, those block are the critical block. In order to split block set, we need
to save the information of critical block for step 6.

Fig. 3 illustrates the WPG of the synthetic program, which is processing in stages
stated above. In this WPG, the colored blocks are critical blocks.

 Critical Block Scheduling 269

I=
{ N ,M }

S =
{s1 }

W =
{1 , 2}

O = 1 ran k u
= 1 1 8

ran k d
= 0

b1

I=
{ N ,M }

S =
{ s2 }

W =
{5 1 ,6 9}

O = 2 rank u
= 116

rank d
= 2

b2

I=
{ N ,M }

S =
{ s2}

W =
{ 16 ,12}

O = 2 rank u
= 89

rank d
= 2

b3

I=
{ N ,M }

S =
{ s4 }

W =
{1 9 ,1 3}

O = 2 ran k u
= 9 0

ran k d
= 2

b4

I=
{ N ,M }

S =
{s5}

W =
{ 1 8 ,1 2 }

O =2 ran k u
= 8 8

ran k d
= 2

b5

I=
{ N ,M }

S =
{ s6}

W =
{ 20 ,15}

O = 2 rank u
= 8 5

rank d
= 2

b6

I=
{ N ,M }

S =
{s10 }

W =
{13 ,10 }

O =4 ran k u
= 57

rank d
= 34

b10

I=
{ N ,M }

S =
{s1 1 }

W =
{15 ,11 }

O = 4 ran k u
= 5 8

ran k d
= 3 4

b11

I=
{ N ,M }

S =
{ s1 2 }

W =
{13 ,8}

O = 4 ran k u
= 5 5

rank d
= 37

b12

I=
{ N ,M }

S =
{s13 }

W =
{ 1 2 ,8 }

O = 4 ran k u
= 55

rank d
= 28

b13

I=
{ N ,M }

S =
{s1 4}

W =
{1 6 ,1 2}

O = 4 rank u
= 59

rank d
= 28

b14

I=
{ N ,M }

S =
{s7 }

W =
{ 27 ,19}

O = 3 ran k u
= 7 7

ran k d
= 1 5

b7

I=
{ N ,M }

S =
{ s8 }

W =
{3 1 ,21}

O = 3 ran k u
= 7 6

rank d
= 15

b8

I=
{ N ,M }

S =
{ s9 }

W =
{1 6 ,1 1}

O = 3 rank u
= 70

rank d
= 17

b9

I=
{ N ,M }

S =
{ s1 5 }

W =
{ 3 ,5 }

O = 5 ran k u
= 4 7

ran k d
= 7 1

b15

I=
{ N ,M }

S =
{ s16}

W =
{ 18 ,13}

O = 6 rank u
= 38

rank d
= 76

b16

I=
{ N ,M }

S =
{ s17 }

W =
{ 11 ,12 }

O = 6 rank u
= 37

rank d
= 76

b17

I =
{ N ,M }

S =
{s1 8 }

W =
{19 ,14 }

O = 6 ran k u
= 4 1

ran k d
= 7 6

b18

I=
{ N ,M }

S =
{ s1 9 }

W =
{ 1 6 ,1 3 }

O = 6 ran k u
= 3 7

ran k d
= 7 6

b19

I =
{ N ,M }

S =
{s20}

W =
{ 17 ,12 }

O = 6 rank u
= 36

rank d
= 7 6

b20 I=
{ N ,M }

S =
{s2 1}

W =
{6 8 ,4 1}

O = 6 rank u
= 42

rank d
= 76

b21

I=
{ N ,M }

S =
{ s22}

W =
{7 ,11 }

O = 7 rank u
= 25

rank d
= 89

b22

I=
{ N ,M }

S =
{ s23 }

W =
{1 4 ,10}

O = 7 rank u
= 27

ran k d
= 9 0

b23

I=
{ N ,M }

S =
{s2 4 }

W =
{ 13 ,8}

O = 7 ran k u
= 2 4

rank d
= 89

b24

I=
{ N ,M }

S =
{ s25}

W =
{ 19 ,13}

O = 8 rank u
= 14

rank d
= 10 2

b25

I=
{ N ,M }

S =
{s26 }

W =
{ 1 4 ,1 6}

O = 8 rank u
= 17

rank d
= 100

b26

I=
{ N ,M }

S =
{ s2 7 }

W =
{ 2 1 ,1 5 }

O =8 ran k u
= 1 6

ran k d
= 9 7

b27

I=
{ N ,M }

S =
{ s2 8 }

W =
{ 23 ,15}

O = 8 ran k u
= 1 6

rank d
= 97

b28

I=
{ N ,M }

S =
{ s2 9 }

W =
{ 1 ,1 }

O = 9 ran k u
= 1

ran k d
= 1 1 7

b29

Fig. 3. WPG of a synthetic example

When the critical blocks are determined in Step 5, it partition all blocks in the
WPG into several Sections. Fig. 4 illustrates the result of the given WPG, which is
partitioned into five Sections, Section1:{b1}, Section 2: {b2, b3, b4, b5, b6, b7, b8,
b9, b10, b11, b12, b13, b14}, Section 3:{b15}, Section 4: {b16, b17, b18, b19, b20,
b21, b22, b23, b24, b25, b26, b27, b28} and Section 5:{b29}. The execution order of
Sections is governed by their dependence relations. After the critical blocks are identi-
fied, the remaining blocks are partitioned into several Inner Wavefronts according to
the order of execution and the dependence relations. In Fig. 4, Section 2 of the WPG
is used to explain how blocks are scheduled in a Section. Since b2 is the critical block
in Section 2, Step 5 is firstly used to schedule b2 to reduce the waiting and synchroni-
zation frequencies. The remaining blocks are partitioned in to three wavefronts ac-
cording to the Oi of each block, by calling Step 6. Finally, iw1={b3, b4, b5, b6},
iw2={b7, b8, b9}, iw3={b10, b11, b12, b13} are determined.

270 S.-L. Chu

Section 2={b2,b3,b4,b5,b6,b7,b8,b9,,b10,b11,b12,b13}
Critical block ={b2}

iw1={b3,b4,b5,b6}

iw2={b7,b8,b9}

iw3={b10,b11,b12,b13,b14}

I=
{N,M}

S=
{s2}

W=
{51,69}

O=2 ranku
=116

rankd
=2

b2

I=
{N,M}

S=
{s2}

W=
{16,12}

O=2 ranku
=89

rankd
=2

b3

I=
{N,M}

S=
{s4}

W=
{19,13}

O=2 ranku
=90

rankd
=2

b4

I=
{N,M}

S=
{s5}

W=
{18,12}

O=2 ranku
=88

rankd
=2

b5

I=
{N,M}

S=
{s6}

W=
{20,15}

O=2 ranku

=85
rankd

=2

b6

I=
{N,M}

S=
{s10}

W=
{13,10}

O=4 ranku
=57

rankd
=34

b10

I=
{N,M}

S=
{s11}

W=
{15,11}

O=4 ranku
=58

rankd
=34

b11

I=
{N,M}

S=
{s12}

W=
{13,8}

O=4 ranku
=55

rankd
=37

b12

I=
{N,M}

S=
{s13}

W=
{12,8}

O=4 ranku

=55
rankd

=28

b13

I=
{N,M}

S=
{s14}

W=
{16,12}

O=4 ranku

=59
rankd

=28

b14

I=
{N,M}

S=
{s7}

W=
{27,19}

O=3 ranku

=77
rankd

=15

b7

I=
{N,M}

S=
{s8}

W=
{31,21}

O=3 ranku

=76
rankd

=15

b8

I=
{N,M}

S=
{s9}

W=
{16,11}

O=3 ranku

=70
rankd

=17

b9

Fig. 4. Scheduled WPG of Section 2

CPS = {CPS1 , CPS2 , CPS3 , CPS4 , CPS5}
={{CP1 , IWF1}, {CP2 , IWF2}, {CP3 , IWF3}, {CP4 , IWF4}, {CP5 ,

IWF5}}

CPS1 : /*Section 1*/
CP1={PH(b1)},
IWF1={φ }

CPS2 : /*Section 2*/
CP2={PH(b2)},
IWF2={iwf1, iwf2, iwf3} ={{PM1(b3), PM2(b4), PM3(b5), PM4(b6)}, {PM1(b7),

PM2(b8), PM3(b9)}, {PM1(b10), PM2(b11), PM3(b12), PM4(b13),
PM5(b14)}}

CPS3 : /*Section 3*/
CP3={PH(b15)},
IWF3={φ }

CPS4 : /*Section 4*/
CP4={PM1(b21)},
IWF2={iwf1, iwf2, iwf3} ={{PH(b16), PM1(b17), PM2(b18), PM3(b19),

PM4(b20)}, {PH(b22), PM1(b23), PM2(b24)}, {PH(b25), PM1(b26),
PM2(b27), PM3(b28)}}

CPS5 : /*Section 5*/
CP5={b29}, IWF5={φ }

Fig. 5. Output of the Critical Block scheduling algorithm

 Critical Block Scheduling 271

time

1
.
.
.
10
.
.
.
20
.
.
.
30
.
.
.
40
.
.
.
50
.
.
.
60
.
.
.
70
.
.
.
80
.
.
.
90
.
.
.

PH PM1 PM2 PM3 PM4 PM5

b1

b2

b3 b4 b5 b6

b7 b8

b9

b10 b11
b12 b13

b14

b15

b21

b29

b17 b16 b18 b19 b20

b22
b23 b24

b25b26 b27 b28

Fig. 6. Graphical execution schedule of the given example

In Step 7, the execution schedule is generated as shown in Fig. 6. Fig. 5 shows the
graph-mode of the execution schedule. The shaded blocks represent the execution
latency. The blank blocks indicate that the processor is waiting for other processors to
synchronize. The bold and dotted lines determine the point of synchronization of
Section and Inner Wavefront respectively.

Sometimes, the execution schedule may occupy more processors than are present
in the architectural configuration. Therefore, Step 8 modifies the execution schedule
as necessary. The sub-step of Step 8 is finding the minimal load processor and place
the comport block. If PH is idle, find the maximal PHW block to fill it. Then using a
loop to find minimal load processor to fill it and plus the PMW of block to its load.
Redo this loop until all block fit in processor.

4 Experimental Results

The code generated by our Octans system is targeted on our PIM simulator that is
derived from the FlexRAM simulator developed by the IA-COMA Lab. at UIUC [11]
based on MINT simulator [14]. Table 1 lists the major architectural parameters. In

272 S.-L. Chu

this experiment, the configuration of one P.Host with many P.Mem processors is
modeled to reflect the benefits of the multiple memory processors.

This experiment utilizes multiple P.Mem processors in the PIM architecture to im-
prove performance. The evaluated applications include five benchmarks: cg is from
the serial version of NAS; swim is from SPEC95; strsm is from BLAS3; TISI is from
Perfect Benchmark, and fft is from [16].

Table 2 and Fig. 7 summarize the experimental results. “Standard” denotes that the
application is executed in P.Host alone. This experiment concerns a general situation
of a uniprocessor system, and is used to compare speedup. "1H-1M” implies that the
application is transformed and scheduled by our previous Pair-Selection Scheduling
(PSS) [5] for the one-P.Host and one-P.Mem configuration of the PIM architecture.
“1H-nM” implies that the application is transformed and scheduled by Critical Block
Scheduling mechanism for the one P.Host and many P.Mem configuration of the PIM
architecture.

Table 2 and Fig. 7 indicate that swim and cg have quite a good speedup when the
Critical Block Scheduling mechanism is employed because these programs contain
many memory references and few dependence relations. Therefore, the parallelism
and memory access performance can be improved by using more memory processors.
Applying the 1H-1M scheduling mechanism can also yield improvements. strsm ex-
hibits an extremely high parallelism but a rather few memory access, so the Critical
Block Scheduling mechanism is more suitably adopted than the 1H-1M scheduling
mechanism. TISI cannot generate speedup when the 1H-1M scheduling mechanism is
applied, since it is a typical CPU bounded program, and involves many dependencies.
The Critical Block Scheduling mechanism can be suitably used to increase speedup-
Finally, in fft, the program is somewhat computation-intensive and sequential, and
therefore only a little speedup can be improved after the 1H-1M schedulin g mecha-
nism is applied. However, an additional overhead is generated when the Critical
Block Scheduling mechanism is applied. Accordingly, 1H-1M and Critical Block
Scheduling mechanisms are suitable for different situations. Choosing the 1H-1M or
Critical Block Scheduling mechanism more heuristically in the scheduling stage of
the Octans system will improve performance.

Table 2. Execution cycles of five benchmarks

SpeedupBench

mark
Standard 1H-1M 1H-nM 1H-1M 1H-nM n (Occupied

P.Mem)

swim 228289321 116669760 52168027 1.96 4.38 6

cg 91111840 51230772 32124287 1.78 2.84 4

TISI 133644087 173503404 91098174 0.77 1.47 2

fft 117998621 101841407 110399171 1.16 1.07 2

strsm 201133647 139990872 53711479 1.44 3.74 5

 Critical Block Scheduling 273

Fig. 7. Execution times of five benchmarks obtained by Standard, 1H-1M and 1H-nM

5 Conclusions

This study proposes a new scheduling mechanism, called Critical Block Scheduling,
with Octans system for a new class of high-performance SoC architectures, Proces-
sor-in-Memory, which consists of a host processor and many memory processors. The
Octans system partitions source code into blocks by statement splitting; estimates the
weight (execution time) of each block, and then schedules each block to the most
suitable processor for execution. Five real benchmarks, swim, TISI, strsm, cg, and fft
were experimentally considered to evaluate the effects of the Critical Block Schedul-
ing. In the experiment, the performance was improved by a factor of up to 4.38 while
using up to six P.Mems and one P.Host. The authors believe that the techniques pro-
posed here can be extended to run on DIVA, EXECUBE, FlexRAM, and other high-
performance MPSoC/CMP architectures by slightly modifying the code generator of
the Octans system.

Acknowledgement

This work is supported in part by the National Science Council of Republic of China,
Taiwan under Grant NSC 96-2221-E-033 -019-.

References

[1] Agrawal, K., He, Y., Hsu, W.-J., Leiserson, C.: Shared Memory Parallelism: Adaptive
Scheduling with Parallelism Feedback. In: Proceedings of the Eleventh ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (2006)

274 S.-L. Chu

[2] Armstrong, R., Hensgen, D., Kidd, T.: The Relative Performance of Various, Mapping
Algorithms is Independent of Sizable Variances in Run-Time Predictions. In: Proceedings
of 7th IEEE Heterogeneous Computing Workshop, March 1998, pp. 79–87 (1998)

[3] Arora, N., Blumofe, R., Plaxton, C.: Thread Scheduling for Multiprogrammed Multiproc-
essors. In: Proceedings of the Tenth Annual ACM Symposium on Parallel Algorithms
and Architectures (January 1998)

[4] Blume, W., Eigenmann, R., Faigin, K., Grout, J., Hoeflinger, J., Padua, D., Petersen, P.,
Pottenger, B., Rauchwerger, L., Tu, P., Weatherford, S.: Effective Automatic Paralleliza-
tion with Polaris. International Journal of Parallel Programming (May 1995)

[5] Chu, S.L.: PSS: a Novel Statement Scheduling Mechanism for a High-performance SoC
Architecture. In: Proceedings of Tenth International Conference on Parallel and Distrib-
uted Systems, July 2004, pp. 690–697 (2004)

[6] Cintra, M., Torrellas, J.: Eliminating Squashes Through Learning Cross-Thread Viola-
tions in Speculative Parallelization for Multiprocessors. In: Proceedings of 2002 Eighth
International Symposium on High-Performance Computer Architecture, February 2002,
pp. 43–54 (2002)

[7] Crisp, R.: Direct Rambus Technology: the New Main Memory Standard. In: Proceedings
of IEEE Micro, November 1997, pp. 18–28 (1997)

[8] Hall, M., Anderson, J., Amarasinghe, S., Murphy, B., Liao, S., Bugnion, E., Lam, M.:
Maximizing Multiprocessor Performance with the SUIF Compiler. IEEE Computer (De-
cember 1996)

[9] Hall, M., Kogge, P., Koller, J., Diniz, P., Chame, J., Draper, J., LaCoss, J., Granacki, J.,
Brockman, J., Srivastava, A., Athas, W., Freeh, V., Shin, J., Park, J.: Mapping Irregular
Applications to DIVA, a PIM-Based Data-Intensive Architecture. In: Proceedings of
1999 Conference on Supercomputing (January 1999)

[10] Judd, D., Yelick, K.: Exploiting On-Chip Memory Bandwidth in the VIRAM Compiler.
In: Proceedings of 2nd Workshop on Intelligent Memory Systems, Cambridge, MA, No-
vember 12 (2000)

[11] Kang, Y., Huang, W., Yoo, S., Keen, D., Ge, Z., Lam, V., Pattnaik, P., Torrellas, J.:
FlexRAM: Toward an Advanced Intelligent Memory System. In: Proceedings of Interna-
tional Conference on Computer Design (ICCD), Austin, Texas (October 1999)

[12] Landis, D., Roth, L., Hulina, P., Coraor, L., Deno, S.: Evaluation of Computing in Mem-
ory Architectures for Digital Image Processing Applications. In: Proceedings of Interna-
tional Conference on Computer Design, pp. 146–151 (1999)

[13] Llosa, J., Gonzalez, A., Ayguade, E., Valero, M.: Swing Module Scheduling: a Lifetime-
Sensitive Approach. In: Proceedings of the 1996 Conference on Parallel Architectures
and Compilation Techniques, October 1996, pp. 80–86 (1996)

[14] Oskin, M., Chong, F.T., Sherwood, T.: Active Page: A Computation Model for Intelligent
Memory. Computer Architecture. In: Proceedings of the 25th Annual International Sym-
posium on Computer Architecture, pp. 192–203 (1998)

[15] Patterson, D., Anderson, T., Cardwell, N., Fromm, R., Keeton, K., Kozyrakis, C., Tomas,
R., Yelick, K.: A Case for Intelligent DRAM. IEEE Micro, 33–44 (March/April 1997)

[16] Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in
Fortran 77. Cambridge University Press, Cambridge (1992)

[17] Snip, A.K., Elliott, D.G., Margala, M., Durdle, N.G.: Using Computational RAM for Vol-
ume Rendering. In: Proceedings of 13th Annual IEEE International Conference on
ASIC/SOC, pp. 253–257 (2000)

[18] Swanson, S., Michelson, K., Schwerin, A., Oskin, M.: WaveScalar. MICRO-36 (Decem-
ber 2003)

 Critical Block Scheduling 275

[19] Veenstra, J., Fowler, R.: MINT: A Front End for Efficient Simulation of Shared-Memory
Multiprocessors. In: Proceedings of MAS-COTS 1994, January 1994, pp. 201–207
(1994)

[20] Wang, K.Y.: Precise Compile-Time Performance Prediction for Superscalar-Based Com-
puters. In: Proceedings of ACM SIGPLAN 1994 Conference on Programming Language
Design and Implementation, pp. 73–84 (1994)

[21] Zhou, Y., Wang, L., Clark, D., Li, K.: Thread Scheduling for Out-of-Core Applications
with Memory Server on Multicomputers. In: Proceedings of the Sixth Workshop on I/O
in Parallel and Distributed Systems (May 1999)

Capsules: Expressing Composable Computations in a
Parallel Programming Model

Hasnain A. Mandviwala1, Umakishore Ramachandran1, and Kathleen Knobe2

1 College of Computing, Georgia Institute of Technology
{mandvi,rama}@cc.gatech.edu

2 Intel Corporation Inc.
kath.knobe@intel.com

Abstract. A well-known problem in designing high-level parallel programming
models and languages is the “granularity problem”, where the execution of paral-
lel task instances that are too fine-grain incur large overheads in the parallel run-
time and decrease the speed-up achieved by parallel execution. On the other hand,
tasks that are too coarse-grain create load-imbalance and do not adequately uti-
lize the parallel machine. In this work we attempt to address this issue with a con-
cept of expressing “composable computations” in a parallel programming model
called “Capsules”. Such composability allows adjustment of execution granular-
ity at run-time.

In Capsules, we provide a unifying framework that allows composition and
adjustment of granularity for both data and computation over iteration space and
computation space. We show that this concept not only allows the user to express
the decision on granularity of execution, but also the decision on the granularity of
garbage collection, and other features that may be supported by the programming
model.

We argue that this adaptability of execution granularity leads to efficient par-
allel execution by matching the available application concurrency to the available
hardware concurrency, thereby reducing parallelization overhead. By matching,
we refer to creating coarse-grain Computation Capsules, that encompass multi-
ple instances of fine-grain computation instances. In effect, creating coarse-grain
computations reduces overhead by simply reducing the number of parallel com-
putations. This leads to: (1) Reduced synchronization cost such as for blocked
searches in shared data-structures; (2) Reduced distribution and scheduling cost
for parallel computation instances; and (3) Reduced book-keeping cost maintain
data-structures such as for unfulfilled data requests.

Capsules builds on our prior work, TStreams, a data-flow oriented parallel
programming framework. Our results on an SMP machine using the Cascade
Face Detector, and the Stereo Vision Depth applications show that adjusting ex-
ecution granularity through profiling helps determine optimal coarse-grain serial
execution granularity, reduces parallelization overhead and yields maximum ap-
plication performance.

1 Introduction

Parallel programming is difficult [18]. Even more daunting is the task of writing a par-
allel program that executes efficiently on varying amounts of available concurrency

V. Adve, M.J. Garzarán, and P. Petersen (Eds.): LCPC 2007, LNCS 5234, pp. 276–291, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Capsules: Expressing Composable Computations in a Parallel Programming Model 277

without source code modification. Different platforms provide a different level of hard-
ware parallelism, for example, the Cell B.E. processor has 1 Power Processing Ele-
ment (PPE) and 8 Synergistic Processing Elements (SPEs), whereas the Intel Core2
Duo processor has upto four general purpose cores. In all these examples, the avail-
able hardware parallelism varies depending on the platform. Even on a given platform,
depending on the workload mix, the parallelism available for a given application may
change over time. Clearly, an application programmer would like to exploit all avail-
able hardware parallelism without having to re-compile code (on the same platform).
The traditional solution was to extract all potential application parallelism and map it
evenly among the available processors. However, if the granularity of parallel tasks is
too fine, and the available hardware concurrency does not match the application concur-
rency, the application would incur excessive run-time overhead in executing the fine-
grain computations on the limited available hardware. Ideally, one would like to shield
the application programmer from the vagaries of resource availability while maximizing
performance. Therefore, there is a need to dynamically adapt the application granularity
(without change in source code) to match the available hardware parallelism and thus
reduce the parallelization overhead.

Current parallel programming models lack the semantic ability to express a granu-
larity adaptation mechanism for parallel tasks, where the granularity of execution could
be changed for greater execution efficiency. Previous high-level parallel programming
models such as Jade [9, 16, 17], Cilk [2], OpenMP [3, 6, 8] and even surveys [1] on
parallel programming trends have acknowledged the problem of high run-time over-
head when executing fine-grain computations. However, the granularity problem is not
addressed at the programming model level and the programmer is left to encode parallel
tasks to have sufficient granularity to avoid high parallelization overheads.

In this paper, we introduce the Capsules parallel programming model, which exposes
the notion of composable computations and in-turn allows the dynamic adjustment of
execution granularity for concurrent tasks. The application is written with the granularity
that makes sense from the point of view of the application. Capsules provides software
abstractions that allow dynamic composition of fine-grained computations into coarser
grain modules when there are insufficient hardware resources. Such a dynamic compo-
sition results in a two-fold advantage: (1) The run-time needs to manage fewer parallel
tasks thus reducing the book-keeping, scheduling, and distribution overheads. (2) The
synchronization costs for shared data access is reduced by amortizing these overhead
costs within the more useful work done for the composed coarse-grain computations.

We show that the Capsules model is a unifying framework that allows the application
programmer to not only make decisions on adjusting the granularity of execution, but
also allows him/her to adjust the granularity of other features. Features such as garbage
collection (GC) of items can be made to occur at different granularities depending on
how aggressive the programmer would like it to be. Similarly, features such as check-
pointing and debugging can also occur at different granularities.

To evaluate the Capsules programming model and its run-time, we have parallelized
two applications, namely: (1) The Cascade Face Detector (FD) [19] and (2) the Stereo Vi-
sion Depth (SV) [20] algorithm. Our results show that increasing the execution granularity
helps reduce run-time overhead, and simultaneously yield an increase in performance.

278 H.A. Mandviwala, U. Ramachandran, and K. Knobe

2 Reducing Run-Time Overhead

In most parallel programming models, overhead is caused during synchronization
points, which represents access to shared data either through explicit put/get [7, 11, 13,
14, 15] calls or implicitly through data access mechanisms such as closures and contin-
uations [2] or access declarations [16]. There may also be book-keeping costs incurred
to track the data requirement of computations/tasks running concurrently. Scheduling
and distribution of tasks also contribute to this overhead. Therefore, the total overhead
cost in such parallel systems is directly proportional to the number of concurrent tasks
that execute and the number of synchronization points reached by those concurrent
tasks during the entire application execution.

Therefore, in the absence of sufficient hardware concurrency, it is important to re-
duce this cost of parallelization. This can be achieved partially by reducing the total
number of parallel tasks the run-time system needs to manage during the execution of
a parallel program. Reducing the total number of tasks means increasing the amount
of computation each parallel task needs to achieve. We refer to this as increasing the
granularity of parallel tasks. Decreasing the number of parallel tasks can also decrease
the number of synchronization points required to access shared data, which is also com-
posed to a coarser granularity. Synchronization points are reduced by moving the shared
data accesses to the boundary of coarser-grain composed computations.

Our approach towards reducing the number of concurrent tasks is to create coarser-
grain tasks from finer-grain tasks dynamically during the parallel execution. The finer-
grain computations inside the coarse-grain computation then execute serially. We
introduce the notion of composable computations to the programming model level that
enables instances of fine-grain computations to be merged together to form coarse-grain
computations and at the same time reduce overall parallelization overhead.

3 Composing Computations Dynamically

In our work, we build upon the TStreams [7] parallel programming model to incorporate
the notion of Composable Computations to enable adjustable granularity. We call our
new parallel programming model Capsules. A user of Capsules can express maximum
potential application parallelism by defining an application task-graph using finest-grain
computational pieces and finest-grain data abstractions. Then, fine-grain computations
can be dynamically composed together by the user to form more efficient coarse-grain
computations. The mechanisms for composability are divided into two sub-mechanism
that work orthogonal to each other. They are: (1) Composition by Iteration Space, and
(2) Composition by Computation Space. Each mechanism is dynamic, and allows run-
time determination of granularity that can affect application performance.

3.1 Software Abstractions: Step, Item, and Tag Capsules

In this section we describe software abstractions that allow expressing composable com-
putation within a parallel programming model. These abstractions are (1) StepCapsules,
(2) ItemCapsules and (3) TagCapsules. These abstractions are similar to the primary ob-
jects in TStreams [7], and differ only in the extra information they encapsulate to allow

Capsules: Expressing Composable Computations in a Parallel Programming Model 279

primer

Costs
Over

Disparity

Resampled
Disparity

Image

Disparity
Map

< ix, iy >

Null
< >

Build
Disparity
Image

Disparity
Image

Disparity
< disp >

Resample
Disparity
Image

Fig. 1. Stereo Vision Depth application graph in Capsules

composability. Each Capsule object either contains only one object instance, or a col-
lection of object instances representing a coarser-granularity. The granularity of these
Capsules is user-defined, and can be dynamically adjusted at run-time.

To make a distinction between static and dynamic information about capsule ob-
jects, each object abstraction is separated into Spaces [7] and Instances. The notion of
Capsule Spaces is analogous to the notion of Classes in Object Oriented Programming
(OOP), which refers to the static specification of the object. Capsule Instances, there-
fore, are dynamic incarnations that conform to the specification of a Capsule Space (or
object class). These distinctions provide Capsules with clean object oriented semantics,
making it an easy development model for parallel programming.

Figure 1 illustrates an application constructed using Capsules. The task-graph de-
notes Capsule Spaces and relationship edges that remain static during program execu-
tion. The triangular shapes represent TagCapsule Spaces that denote iteration spaces
for computation and data. The relationship between the iteration spaces and the com-
putation and/or data is denoted by the dotted line. The oval shapes here represent
computations or StepCapsule Spaces. Finally, the rectangular shapes represent data or
ItemCapsule Spaces. These store data objects communicated between computations
during program execution.

Listed below are the three basic objects found in TStreams that we use and extend
from in Capsules:

Tag Instances are unique identifiers for a given Step or an Item instance (similar
to Tuples in Linda [5]). Tags are multi-dimensional, where each dimension represents
an iteration dimension specifying a range of possible values. These dimensions can
be of any arbitrary type but only integer Tag dimensions are supported in the current
implementation. A Collection of Tag Instances are called TagCapsule Instances.

Step Instances are function calls to the finest-grain user-defined indivisible compu-
tations. Each step instance is uniquely identified by a parametrizing Tag instance. Step
instances produce Item instances or Tag instances via the producer relation. They also
produce ItemCapsule instances and TagCapsule instances. Step instances also consume
Item instances and ItemCapsule instances via the consumer relationship. A collection
of finer-grain Step Instances is called a StepCapsule Instance.

280 H.A. Mandviwala, U. Ramachandran, and K. Knobe

Item Instances are fine-grain data produced by other computation Step instances.
Each item instance is uniquely identified by a Tag instance. A collection of Item In-
stances is called an ItemCapsule Instance.

Now we list objects specifically added to Capsules to allow for composability:

TagCapsules Instances are tree structures that store multiple Tag instances in a
compressed form. This is the abstraction that enables composition over iteration space.
The depth i of the tree represents the dimension i of a Tag instance. Each tree node
consist of a Tag dimension value. Enumeration of Tags is achieved by the cross-product
of a Tag dimension value at depth i with the child Tag dimension values at depth i + 1.
Since trees have a hierarchical structure with fewer root nodes than child nodes, this
structure also specifies the hierarchical compression of the Tags dimension values at
different dimensions. Tag dimension values that are higher in the tree are compressed
more (have fewer nodes representing them) than Tag dimension values lower in the tree.

StepCapsule Instances are coarse-grain computations that are composed from other
coarse-grain Step, Item and Tag Capsules enabling composition over computation
space. StepCapsules play a dual role in the composable computation paradigm. They
not only represent coarse-grain computations, but also represent the GC boundary for
an automatic constrained GC mechanism (described in detail in sec. 4.3). StepCapsule
instances are also hierarchical tree data-structures, where each non-leaf node represents
a coarse-grain computation and a leaf-nodes represents fine-grain Step instances.

ItemCapsule Instance is also a collection of Items forming a coarse-grain data Cap-
sule. It is also a tree structure similar to the TagCapsule instance tree. Each node at depth
i of the ItemCapsule instance tree represents the Tag dimension value of the parametriz-
ing TagCapsule instance tree at the same depth i. At the leaf-nodes of the tree, the actual
items are stored. The items stored in a leaf-node are parametrized by the Tags repre-
sented by the parent hierarchy of the leaf-node.

Finally, we enumerate the Capsule primitives that specify the static relationships in
the application task-graph. These Spaces, encapsulate the common denominator prop-
erties of Capsule object instances that belong to the same space.

TagCapsule Spaces, contain the static dimension information, namely, the num-
ber of dimensions in the iteration space and the name of each dimension. TagCapsule
Spaces also store information about the objects they parametrize. Parametrization is a
relationship between TagCapsule Spaces and other ItemCapsule Spaces or StepCapsule
Spaces that specify which objects the TagCapsule instances uniquely identify.

StepCapsule Spaces contain static information about its parent StepCapsule Space,
its parametrizing TagCapsule Space and child that are contained within it. They also
contain producer/consumer relationship information between itself and other ItemCap-
sule and TagCapsule Spaces.

ItemCapsule Spaces also contain static information about its parametrizing Tag-
Capsule Space and its parent StepCapsule Space.

3.2 Reducing Synchronization Points

In Capsules, synchronization points or data-access points to shared data structures can
be reduced by creating coarser-grain data objects and coarser-grain computations. The
synchronization points accessing coarse-grain data are moved to the border of the

Capsules: Expressing Composable Computations in a Parallel Programming Model 281

coarse-grain computations. Each coarse-grain computation requires a serialization
schedule that defines the execution order of its constituent fine-grain computation. For
StepCapsules created by composing over iteration space, the serialization schedule is
determined by inspecting the StepCapsule instance’s parametrizing TagCapsule
instance. For StepCapsules created by composing over computation space, the seri-
alization schedule requires analysis of data-dependencies between the component com-
putations.

Moving synchronization or data-access points to the border of the serialization sched-
ule refers to the transformation required to the data-access pattern and the granularity of
input ItemCapsules, such that the total number of synchronization points in the appli-
cation execution are reduced. When a StepCapsule instance is composed over iteration
space, moving synchronization points to the boundary of the coarse-grain StepCapsule
depends on the relationship of the dimensions between the producer/consumer StepCap-
sule Space and its ItemCapsule Space. However, for a StepCapsule instance composed
over computation space, moving synchronization points requires analysis of the produc-
er/consumer edge information between the composed coarse-grain StepCapsule Space
and its ItemCapsule Spaces.

4 Composing by Computation Space

Composition over Computation Space is based on the notion of combining distinct com-
putations or distinct pieces of code to create coarse-grain computations. Furthermore,
these composed computations allow further composability by combining with other
computation pieces like an erector set. This is a concept derived from functional and
procedural languages where a coarse-grain function can be composed from fine-grain
functions.

4.1 Serialization Order When Composing over Computation Space

To execute coarse-grain StepCapsules created by composition over computation space,
a serial execution schedule is required to define the execution order of the fine-grain
computations contained within it. We call this the serialization order for the coarse-grain
StepCapsule. In Capsules, programmers are only required to provide data-dependencies
between computation with the help of producer and consumer edges. Therefore, in or-
der to construct a non-blocking serial execution schedule, a-priori resolution of data-
dependencies via edge analysis is required. We have not yet implemented the automatic
generation of a serialization schedule and leave it for future work.

4.2 Moving Synchronization Points to Coarse-Grain Computation Boundary

When composing over computation space, data access information for the composed
coarse-grain StepCapsule Space needs to be distilled from the application graph. Ex-
plicit get() calls to retrieve data from external ItemCapsule Spaces are only required at
the beginning of the coarse-grain StepCapsule. Likewise, put() calls to produce data and
instantiate further StepCapsule instances are only needed at the end of the composed
coarse-grain computation. This transformation has also not been implemented and is
part of our future work.

282 H.A. Mandviwala, U. Ramachandran, and K. Knobe

Image
Reader

Scale
Image
And

process
Face

Detect

Post
Process
AndSave
To Disk

Scaled
Image

ScaleImageTSpace

<scale>

DetectFaceTSpace

<scale, ix, iy>

IsAFaceTSpace

<scale, ix, iy>

Image

BootstrapTSpace

<>

IsAface

Fig. 2. Cascade Face Detector application, with a hierarchy of StepCapsule Spaces composed over
computation space. The ScaleImageAndProcess and FaceDetect StepCapsule Spaces, along with
the ScaleImage ItemCapsule Space and the DetectFaceTSpace TagCapsule Space are composed
into one coarse-grain StepCapsule Space. This StepCapsule Space and the remainder objects
form the outermost StepCapsule Space.

4.3 StepCapsule Space: A Software Abstraction Enabling Composition over
Computation Space

A StepCapsule Space is constructed by combining together Step/Item/Tag Capsule
Spaces. We refer to these finer-grain Spaces composed to form a coarse-grain StepCap-
sule Space as Inner Spaces. A composed StepCapsule Space also contains information
about the producer/consumer relationships between the inner spaces.

A Hierarchy of Composable Computations. As fine-grain StepCapsule Spaces are
composed into coarse-grain StepCapsule Spaces, a hierarchical StepCapsule tree is
formed. Each finest-grain Step, Item and Tag Capsule Space in the application task-
graph occurs exactly once as a leaf node of this tree. Each intermediate node of the tree
represents the coarse-grain composed StepCapsule Spaces. For a given application, a
StepCapsule Space hierarchy tree can be constructed in multiple ways using an API.
Figures 1 and 2 illustrate two applications in their composed hierarchical form.

Selecting a Computation Space Hierarchy. Constructing the right computation space
hierarchy is dependent on how the application needs to be partitioned along its data and
computation boundaries to extract parallelism. Selecting the best hierarchy is dependent
on complex variables such as available resources (memory and hardware concurrency),
hardware platform characteristics such as shared memory or distributed memory, and
exploitable application parallelism. Furthermore, in future hardware platforms, which
will likely have hierarchical memory structures, the ability to hierarchically express
computations for locality would be significant for performance. For our current system,
we leave the determination of composable computation hierarchy to the application
developer.

Capsules: Expressing Composable Computations in a Parallel Programming Model 283

It is important to distinguish that the computation space hierarchy is statically de-
fined by the user using the composition API. This hierarchy cannot change once the
application begins execution. However, the decision to use the composed StepCapsule
Space for coarse-grain serial execution is made dynamically at run time for each Step-
Capsule instance. Different StepCapsule instances can therefore be made to execute
either serially in their coarse-grain form or simply allow the inner fine-grain StepCap-
sules instances to execute in parallel.

StepCapsule as a Boundary for GC and Scope. The coarse-grain StepCapsule in-
stance also acts as a data-structure to maintain a GC boundary for all the ItemCap-
sules contained within it. Once all inner StepCapsule instances are done executing, the
coarse-grain parent StepCapsule instance is marked executed, allowing all inner Item-
Capsule instances to be GC’ed.

From a scoping perspective, inner ItemCapsule instances are visible only to inner
StepCapsule instances contained within the same coarse-grain StepCapsule instance.
However, inner StepCapsule spaces have visibility to Item/Tag Capsule spaces defined
anywhere in their parent StepCapsule Space hierarchy.

4.4 Rules for Constructing a StepCapsule

The rules for composition over computation space are summarized as restrictions that
guarantee the composed coarse-grain StepCapsule Space to be (1) atomic in execution,
(2) to be uniquely tagged, (3) to terminate and (4) to not contain any non-reachable
computations. These rules rules keep the execution model simple and avoid dead-locks
during parallel execution.

5 Composition over Iteration Space

In this section we describe the notion of composing over iteration space within the
context of parallel programming models.

Iteration space simply refers to all possible values that Tag instances can have. For
example, a TagCapsule Space < int x, int y > can span the entire space of two di-
mensional positive integer values. Therefore, the notion of composition over iteration
space is defined by a collection of Tag instances put together over one or more dimen-
sions of a TagCapsule Space. Since Tag instances actually parametrize computations
(Steps) and data (Items), composition over iteration space is said to be a generalized
form of the concept of composing together multiple instances of the same computation
or composing together multiple instances of the same data-type.

5.1 Serialization Order When Composing over Iteration Space

Similar to coarse-grain computations created by composition over computation space,
coarse-grain computations created by composition over iteration space also require a
serialization schedule for execution. The serial execution schedule of a StepCapsule
is based on the structure of its parametrizing TagCapsule instance tree. The schedule

284 H.A. Mandviwala, U. Ramachandran, and K. Knobe

primer
Step
Space
foo()

Step
Space
Bar()

Item Space

fooTagSpace

< i >

barTagSpace

< i, j >

BootstrapTSpace

< >

foo
({<1>,<2>})

x
{<1>,<2>}

{<1,7>,
<1,8>,

<2,7>,<2,8>}

bar({
<1,7>,<1,8>,
<2,7>,<2,8>

})

primer(<>)

{<1>,<2>}

{< >}

Fig. 3. An example of Composition by Iteration Space

simply traverses the sparse TagCapsule tree in-order, and appends the Tag dimension
value found at depth i as the value for Tag dimension i. At every leaf node at depth N ,
the fine-grain StepCapsule instance is executed with the specified Tag Instance.

Clearly, the serial execution order is dependent on the order of Tags in the TagCap-
sule instance tree. As Tag dimension values at any level of a TagCapsule tree are created
by a user-defined fine-grain StepCapsule function, the serialization order is therefore
created by these producers by virtue of their serial creation order.

5.2 Moving Synchronization Points to Coarse-Grain Computation Boundary

Reducing the number of synchronization points means reducing the number of accesses
to ItemCapsule Spaces. This requires the ItemCapsule instances to be coarse-grain so
as to satisfy the data-requirements of the coarse-grain StepCapsule instance.

Retrieving any ItemCapsule instance in the Capsules programming model requires
the run-time to define its parametrizing TagCapsule instance. This TagCapsule instance
is derived from the parametrizing TagCapsule instance of the executing StepCapsule
instance. Specifically, the matching dimensions between the parametrizing TagCap-
sule spaces of both the ItemCapsule space and the StepCapsule space determine what
sub-tree in the StepCapsule instance’s TagCapsule instance will be used to retrieve the
ItemCapsule instance. The rules for valid producer and consumer relationships between
StepCapsules and ItemCapsules are summarized in the next section. The ability to ex-
press coarse-grain ItemCapsules and performing data-access on them reduces the total
number of synchronization points during program execution.

The following code example is used to explain the transformation that reduces syn-
chronization points by moving them to the coarse-grain computation boundary:

foo () p a r a m e t r i z e d by TagCapsule Space <i , j >: foo<i , j>
foo<i , j> r e q u i r e s a [i] and b [j] a s i n p u t
foo<i , j> p r o d u c e s c [i] [j] a s o u t p u t

Ai = g e t I t e m (A, <i >) ;
Bj = g e t I t e m (B , <j >) ;
C i j = foo (Ai , Bj) ;
p u t I t e m (Ci j , <i , j >) ;

Capsules: Expressing Composable Computations in a Parallel Programming Model 285

Here, if foo() is executed in its finest granularity, there are (I ∗ J) instances of foo(),
each performing one synchronized get() on each Item Spaces A and B and one synchro-
nized put() on Item Space C to satisfy its input/output data requirements. Therefore,
overall 2(I ∗ J) get() calls and (I ∗ J) put() calls are performed. However, if foo() is
composed along a dimension of its parametrizing iteration space i, there should then
only be J coarse-grain instances of foo(). Each coarse-grain instance of foo< j > per-
forms only one synchronized get() on A[0:I] and one on B[j]. Overall, there are only
(2 ∗ J) synchronized get() calls. Similarly, each coarse-grain instance of foo< j >
performs one put() of C[0:I,j]. Below is a code representation of the transformation:

A a l l = g e t I t e m (A, <0: I >) ;
Bj = g e t I t e m (B , <j >) ;
f o r (i n t i = 0 ; i <= I ; i ++) {

Cj [i] = foo (A a l l [i] , Bj) ;
}
p u t I t e m (Cj [0 : I] , <0: I , j >) ;

This transformation reduces the number of synchronization points required for foo<
i, j > by creating coarse-grain serial executions of foo< j >.

5.3 TagCapsule Space: A Software Abstraction Enabling Composition over
Iteration Space

Similar to Tag Spaces in TStreams, TagCapsule Spaces in Capsules parametrize Item/-
Tag Capsules Spaces. Although more general, TagCapsules enable a behavior similar
to that of tiling [4].

Since a TagCapsule instance represents a collection of Tag instances, when a Tag-
Capsule instance parametrizes a StepCapsule instance, each inner Tag instance inher-
ently parametrizes a Step instance to form a collection of parametrized Step instances.
However, from the stand point of the Capsules parallel programming model, all step
instances parametrized by the TagCapsule are denoted as one coarse-grain StepCapsule
instance that executes atomically and serially over the finer-grain Step instances.

TagCapsule instances denote the same granularity for ItemCapsule instances as they
do for the StepCapsule instances they parametrize. This implies that for a given Tag-
Capsule instance only one coarse-grain ItemCapsule instance would exist, where the
inner fine-grain item instances would have a one to one mapping with the inner fine-
grain Tag instances in the TagCapsule. For example, in fig. 3, the fooAndItemTagSpace
parametrizes both the foo() StepCapsule space and the ItemCapsule Space. Therefore,
the granularity of the TagCapsule instances in fooAndItemTagSpace denotes the granu-
larity of ItemCapsule instances in ItemCapsule Space.

5.4 Rules for Composition over Iteration Space

In this section, we discuss rules that define composition over iteration space. In general,
these rules provide restrictions on certain application graphs that make composability
either expensive or impossible. We eliminate this class of application graphs to maintain
a balance between a simple and efficient parallel run-time and a parallel programming

286 H.A. Mandviwala, U. Ramachandran, and K. Knobe

model that is general enough to sufficiently address the composability requirements for
the class of high performance vision applications targeted in this work.

To elaborate further, these rules describe restrictions on the dimensions of object
spaces with producer/consumer relationships between them. In order words, these rules
define what producer/consumer relationships/edges are allowed between StepCapsule
Spaces and other Tag/Item Capsule Spaces.

For simplification, let us call the dimensions of the parametrizing TagCapsule Space
of an Item/Step Capsule Space as the dimensions of that Item/Step Capsule Space.

The rules of composition limit StepCapsule Spaces to emit into Item/Tag Capsule
Spaces that have the same number or more dimensions as itself (i.e. dimensional ex-
pansion), with matching dimensions listed in the same order. This disallows any case of
dimensional reduction, where the produced objects have fewer dimensions that the pro-
ducer. Such cases, which could lead to Tag value collisions, are invalid in the Dynamic
Single Assignment (DSA) [12] property of the underlying programming mode [7].

Consumer StepCapsule Spaces, on the other hand, can have fewer or greater dimen-
sions that their input ItemCapsule Spaces. If a consumer StepCapsule has fewer dimen-
sions, the extra dimensions on the ItemCapsule Space can be defined with the help of
dimension definition functions specified for the input edge. These functions can also in-
spect other ItemCapsule Spaces (also known as dependent edges) to define the missing
dimensions. However, these dependent ItemCapsule Spaces should have dimensions
fully specified by the consumer StepCapsule’s dimensions. Although an implementa-
tion specific restriction that can be removed with additional support in the API, cycles
are also currently disallowed in the application task-graph.

5.5 ItemCapsule Spaces: Composed over Iteration Space

When creating coarse-grain computations by composing over iteration space (sec. 5), it
is crucial to also have the ability to change the granularity of data objects. We call these
composable data objects, ItemCapsules. The granularity of an ItemCapsule instance
depends on the granularity of the TagCapsule instance that parametrizes it. As described
earlier in sec. 3.1, ItemCapsules are tree data-structures that mimic the structure of
their parametrizing TagCapsule instance. This is essential to allow efficient querying
of the ItemCapsule tree for relevant Items that are required to fulfill the data request of
executing StepCapsule instances.

6 SMP Run-Time Implementation

The current C++ Capsules SMP run-time supports only composition over iteration
space.

The run-time implementation is based on a simple execution model of work queues.
Each processor or processing core is considered as a separate Processing Element (PE)
with each PE assigned a unique work queue and a work thread. The work threads con-
tinuously pop StepCapsule instances from the head of the work queue for execution,
whereas new StepCapsule instances are inserted at the tail of the queue.

Each StepCapsule instance is either a fine-grain StepCapsule instance or is a com-
posed StepCapsule instance of multiple Step/Item/Tag Capsule instances. In the case it

Capsules: Expressing Composable Computations in a Parallel Programming Model 287

is an indivisible StepCapsule instance, the execution invokes the serialization schedule
of the StepCapsule and executes all the fine-grain Step instances represented by the
parametrizing TagCapsule instance. Composed StepCapsule instances can be operated
on in one of two ways. They can also be executed serially, requiring a serialization
schedule that would define the execution order of the inner StepCapsule instances, or
they can be used as a GC container. The inner StepCapsule instances in this case are
executed in parallel in work queues, whereas the composed StepCapsule GC container
keeps track of executed inner StepCapsules with the help of a counter. Once all inner
StepCapsule instances are done executing in parallel, the GC container and all inner
Item/Tag Capsule instances are GC’ed.

Every application execution is encapsulated in a default StepCapsule GC instance
that contains all application StepCapsule instances. Application termination is achieved
once this outermost StepCapsule GC container is GC’ed.

7 Performance Evaluation and Results

In this section we describe our evaluation methodology, test cases and results.

7.1 Evaluation Methodology

The metrics used to evaluate the application performance and the underlying Capsule
mechanisms are as follows:

The Normalized Execution Time is the ratio of the parallel execution time with
respect to the serial execution time of the original unmodified application.

The Percentage Overhead represents the fraction of the CPU time spent in the Cap-
sules run-time with respect to the total work done on all PEs. The run-time overhead
consists of all non-application related operations performed by the system. The over-
head percentage represents the efficiency with which the Capsules programming model
is able to execute the application in parallel.

The OProfile [10] statistical sampling tool was used to measure the run-time over-
head. Samples gathered in application functions were separated from samples captured
in the run-time to compute the application percentage overhead. Samples were captured
at every 90K clock cycle intervals with a call-graph depth size of 10.

The hardware platform used was an 8-Way SMP machine with 2 x 1.6GHz Intel
Quad Core, Core 2 Duo Clovertown processors, with 2 GB RAM. A 32bit Fedora Core
6 Linux OS with kernel 2.6.20-1.2962 was used.

7.2 Applications

We parallelized two applications using Capsules: (1) The Cascade Face Detector (FD)
[19] (fig. 2) and (2) a Stereo Vision depth (SV) algorithm [20] (fig. 1).

The face detector applies a cascade of pre-computed simple facial features on a win-
dow of fixed size in the image to detect whether a face exists in that window or not.
This detection process is performed over the entire input image by shifting the window
over the X and Y axes of the image to detect faces on different locations in the image.

288 H.A. Mandviwala, U. Ramachandran, and K. Knobe

Normalized Execution Time - Face Detector 2MB

0.0

0.5

1.0

1.5

2.0

2.5

0 20 40 60 80 100 120
Increasing Grain Size (ix, iy)

N
or

m
al

iz
ed

 T
im

e

PEs=1
PEs=2
PEs=4
PEs=6
PEs=8

Normalized Execution Time - Stereo Vision Depth

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Increasing Grain Size (x,y,disparity)

N
or

m
al

iz
ed

 T
im

e

PEs=1
PEs=2
PEs=4
PEs=6
PEs=8

Fig. 4. Performance, Normalized Execution Time:(left to right): Cascade Face Detector, Stereo
Vision Depth; x-axis: Increasing Granularity; y-axis: Normalized time

In order to detect faces of different sizes, the image is scaled down and the detection
process is repeated over again. This scaling and re-detection is repeated until the image
scales down to the size of the feature detection window. A post processing phase, takes
all detected faces and prunes duplicates that are close to each other.

The Stereo correlation algorithm is used to detect how far objects are placed in a
given scene. It outputs a depth map from two stereo input images. The first stage in the
algorithm consists of building multiple disparity-maps for the two input images. The
second stage re-samples the disparity-maps to find the highest disparity values. The
final stage composes the re-sampled disparity-maps to create the final depth-map.

7.3 Results

Figure 4 illustrates the normalized execution time of the two applications on different
number of available PEs. The x-axis for the FD graph represents the granularity selected
for the detection windows in both the x and y axis location in the image < ix, iy >.
The total number of detection windows grouped together is therefore the square of
the granularity selected. The x-axis for the SV graph represents a three-dimensional

% Overhead - Face Detector 2MB

0

10

20

30

40

50

60

0 20 40 60 80 100 120

Increasing Grain Size (ix, iy)

P
er

ce
nt

ag
e

O
ve

rh
ea

d

PEs=1
PEs=2
PEs=4
PEs=6
PEs=8

% Overhead - Stereo Vision Depth

0

10

20

30

40

50

60

70

80

Increasing Grain Size (x,y,disparity)

P
er

ce
nt

ag
e

O
ve

rh
ea

d

PEs=1
PEs=2
PEs=4
PEs=6
PEs=8

Fig. 5. Performance, Percentage Overhead: (left to right): Cascade Face Detector, Stereo Vision
Depth; x-axis: Increasing Granularity; y-axis: Percentage Overhead

Capsules: Expressing Composable Computations in a Parallel Programming Model 289

granularity parameter < ix, iy, disparity >. The first-two parameters are again the
x and y pixel locations grouped together for the first phase of processing. The third
dimension disparity represents the disparity-maps grouped together for processing of
the second phase of the algorithm.

Figure 5 illustrates the percentage overhead of all run-time mechanisms with respect
to the total work done by all the PEs for a given execution.

Figure 4 clearly shows that increasing the granularity on different dimensions
increases the performance of the application’s parallel execution regardless of the num-
ber of PEs. Both applications speed-up by several factors with the help of granular-
ity adjustment. Furthermore, percentage overhead in fig. 5 shows that increasing the
granularity actually increases the efficiency of the parallel execution with less overhead
incurred by the run-time. This is due to several factors. There is a total reduction in Step-
Capsule instances created during the application execution, which in-turn reduces the
total overhead due to synchronization, distribution and scheduling, and book-keeping
cost. The percentage overhead confirms the hypothesis that composability in Capsules,
even though more memory intensive due to its dynamic data-structures than other sys-
tems such as Cilk, can be used to dynamically create efficient coarse-grain computations
to reduce the total overhead of parallelization. The fewer coarser-grain computations
reduce the overhead to useful work ratio of resources and thereby improve the applica-
tion’s efficiency in using the underlying hardware concurrency for speed-up.

Figure 4 shows that application speed-up becomes constant beyond a certain point
and does not change with further increasing granularity. A similar trend is seen in fig. 5
where the percentage overhead does not go down any further beyond increasing the
granularity after a certain point. This is due to the fact that the dynamic data-structures
required to enable coarse-grain computations begin to out-weigh the marginal gain
achieved by reducing the cost of parallelization.

8 Conclusion

We introduce Capsules, a parallel programming model that brings together two distinct
forms of composability namely, composability over computation space and compos-
ability over iteration space. Composability at the programming model level enable a
user to dynamically adjust the granularity of parallel tasks and reduce system overhead.
We show in our experiments that overhead due to synchronization and run-time book-
keeping costs can be minimized by adjusting the granularity of an application’s concur-
rent tasks and moving the synchronization points to the boundary of those coarse-grain
computations. Overall, composability at the programming model level enables the ap-
plication developer to write a parallel application once, and tune its granularity param-
eters later to extract the optimal amount of potential application parallelism required to
efficiently utilize the hardware concurrency.

Acknowledgments

The work has been funded in part by an NSF ITR grant CCR-01-21638, NSF NMI
grant CCR-03-30639, NSF CPA grant CCR-05-41079, and the Georgia Tech Broadband

290 H.A. Mandviwala, U. Ramachandran, and K. Knobe

Institute. The equipment used in the experimental studies is funded in part by an NSF
Research Infrastructure award EIA-99-72872, and Intel Corp. We thank the members of
the Embedded Pervasive Lab at Georgia Tech (http://wiki.cc.gatech.edu/epl/) for their
helpful feedback on our work.

References

1. Asanovic, K., Bodik, R., Catanzaro, B.C., Gebis, J.J., Husbands, P., Keutzer, K., Patterson,
D.A., Plishker, W.L., Shalf, J., Williams, S.W., Yelick, K.A.: The Landscape of Parallel Com-
puting Research: A View from Berkeley. Technical Report UCB/EECS-2006-183, EECS
Department, University of California, Berkeley (December 2006)

2. Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H., Zhou, Y.: Cilk:
An Efficient Multithreaded Runtime System. In: PPOPP 1995: Proceedings of the Fifth ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, pp. 207–216.
ACM Press, New York (1995)

3. Board, O.A.R.: OpenMP: Simple, Portable, Scalable SMP Programming (2006)
4. Carter, L., Ferrante, J., Hummel, S.F., Alpern, B., Gatlin, K.-S.: Hierarchical Tiling: A

Methodology for High Performance. Technical Report CS-96-508, University of California
at San Diego, San Diego, CA (1996)

5. Gelernter, D.: Generative communication in Linda. ACM Transactions on Programming
Languages and Systems 7(1), 80–112 (1985)

6. Intel. C++ Compiler 9.1 for Linux
7. Knobe, K., Offner, K.: TStreams: How to Write a Parallel Program. Technical Report HPL-

2004-193, Hewlet Packard Labs - Cambridge Research Laboratory, Cambridge, MA (2004)
8. Kusano, K., Satoh, S., Sato, M.: In: Valero, M., Joe, K., Kitsuregawa, M., Tanaka, H. (eds.)

ISHPC 2000. LNCS, vol. 1940, p. 403. Springer, Heidelberg (2000)
9. Lam, M.S., Rinard, M.C.: Coarse-grain parallel programming in Jade. In: PPOPP 1991: Pro-

ceedings of the third ACM SIGPLAN symposium on Principles and practice of parallel pro-
gramming, pp. 94–105. ACM Press, New York (1991)

10. Levon, J.: OProfile, a system-wide profiler for Linux systems
11. Nikhil, R.S., Ramachandran, U., Rehg, J.M., Halstead Jr., R.H., Joerg, C.F., Kontothanassis,

L.: Stampede: A programming system for emerging scalable interactive multimedia applica-
tions. In: Carter, L., Ferrante, J., Sehr, D., Chatterjee, S., Prins, J.F., Li, Z., Yew, P.-C. (eds.)
LCPC 1998. LNCS, vol. 1656. Springer, Heidelberg (1999)

12. Offner, C., Knobe, K.: Weak Dynamic Single Assignment Form. Technical Report HPL-
2003-169R1, Hewlet Packard Labs - Cambridge Research Laboratory, Cambridge, MA
(2003)

13. Ramachandran, U., Nikhil, R., Rehg, J.M., Angelov, Y., Adhikari, S., Mackenzie, K., Harel,
N., Knobe, K.: Stampede: A Cluster Programming Middleware for Interactive Stream-
oriented Applications. IEEE Transactions on Parallel and Distributed Systems (2003)

14. Ramachandran, U., Nikhil, R.S., Harel, N., Rehg, J.M., Knobe, K.: Space-Time Memory: A
Parallel Programming Abstraction for Interactive Multimedia Applications. In: Proc. Princi-
ples and Practice of Parallel Programming (PPoPP 1999), Atlanta, GA (May 1999)

15. Rehg, J.M., Knobe, K., Ramachandran, U., Nikhil, R.S., Chauhan, A.: Integrated Task and
Data Parallel Support for Dynamic Applications. Scientific Programming 7(3-4), 289–302
(1999); Invited paper selected from 1998 Workshop on Languages, Compilers, and Run-
Time Systems

16. Rinard, M.C., Scales, D.J., Lam, M.S.: Heterogeneous Parallel Programming in Jade. In:
Supercomputing 1992: Proceedings of the 1992 ACM/IEEE conference on Supercomputing,
pp. 245–256. IEEE Computer Society Press, Los Alamitos (1992)

Capsules: Expressing Composable Computations in a Parallel Programming Model 291

17. Rinard, M.C., Scales, D.J., Lam, M.S.: Jade: A High-Level, Machine-Independent Language
for Parallel Programming. Computer 26(6), 28–38 (1993)

18. Sutter, H., Larus, J.: Software and the Concurrency Revolution. Queue 3(7), 54–62 (2005)
19. Viola, P., Jones, M.: Rapid Object Detection using a Boosted Cascade of Simple Features.

CVPR 01, 511 (2001)
20. Yang, R., Pollefeys, M.: A Versatile Stereo Implementation on Commodity Graphics Hard-

ware. Journal of Real-Time Imaging 11, 7–18 (2005)

Communicating Multiprocessor-Tasks

Jörg Dümmler1, Thomas Rauber2, and Gudula Rünger3

1 Chemnitz University of Technology
djo@informatik.tu-chemnitz.de

2 University Bayreuth
rauber@uni-bayreuth.de

3 Chemnitz University of Technology
ruenger@informatik.tu-chemnitz.de

Abstract. The use of multiprocessor tasks (M-tasks) has been shown to be suc-
cessful for mixed task and data parallel implementations of algorithms from
scientific computing. The approach often leads to an increase of scalability com-
pared to a pure data parallel implementation, but restricts the data exchange be-
tween M-tasks to the beginning or the end of their execution, expressing data or
control dependencies between M-tasks.

In this article, we propose an extension of the M-task model to communicat-
ing M-tasks (CM-tasks) which allows communication between M-tasks during
their execution. In particular, we present and discuss the CM-task programming
model, programming support for designing CM-task programs, and experimental
results. Internally, a CM-task comprises communication and computation phases.
The communication between different CM-tasks can exploit optimized communi-
cation patterns for the data exchange between CM-tasks, e.g., by using orthogonal
realizations of the communication. This can be used to further increase the scala-
bility of many applications, including time-stepping methods which use a similar
task structure for each time step. This is demonstrated for solution methods for
ordinary differential equations.

1 Introduction

The implementation of modular programs on parallel platforms can be supported by
multiprocessor task programming (M-task programming). Each M-task represents a
part of a program which can be executed in parallel by an arbitrary number of proces-
sors. The entire program consists of a set of M-tasks; a coordination structure specifies
how the M-tasks of one specific program cooperate with each other and which de-
pendencies have to be considered for the execution. For the coordination of M-tasks
different parallel programming models have been proposed [13, 14, 15, 21]. A coordi-
nation structure in form of SP-graphs (serial parallel graphs) has been used in the TwoL
model [15]. Using M-tasks often leads to a better scalability compared to a pure data
parallel implementation due to a decrease of the communication overhead. Executing
M-tasks concurrently on smaller subsets of processors reduces the internal overhead
for collective communication of the M-tasks, thus reducing the overall communication
overhead.

V. Adve, M.J. Garzarán, and P. Petersen (Eds.): LCPC 2007, LNCS 5234, pp. 292–307, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Communicating Multiprocessor-Tasks 293

An M-task can use data produced by another M-task, leading to dependencies be-
tween M-tasks that have to be considered for their execution. A dependency between
two M-tasks may require communication to achieve a data re-distribution such that a
data structure is reordered at the end of one M-task A to be available in a data distribu-
tion expected by another M-task B before the execution of B starts. This restricts the
data exchange between M-tasks to the beginning or the end of their execution.

In this article, we extend the standard M-task model as used in the TwoL model to
the model of communicating M-tasks (CM-tasks) which allows a more complex graph
structure and an additional kind of communication between M-tasks. The extension
includes modified M-tasks which have the ability to communicate with other M-tasks
during their execution. This new feature can capture the behavior of applications from
scientific computing or numerical analysis in which modules exchange information dur-
ing their execution. Examples are modules with internal iterations exchanging data with
other modules after each iteration step. The CM-task model can also benefit from spe-
cific communication patterns. For example, it is possible to organize the communication
phases between CM-tasks in an orthogonal fashion, thus enabling a more efficient real-
ization of array-based applications on many execution platforms.

The CM-task programming model requires new scheduling and load balancing al-
gorithms to achieve an efficient execution. The scheduling has to ensure that CM-tasks
which communicate with each other are executed concurrently to each other on disjoint
sets of processors. The scheduling has to be based on a cost model which also takes the
internal computations and the external communications between CM-tasks into consid-
eration. To support the programming in the CM-task model we have designed a trans-
formation framework including a specification mechanism for CM-task programs and
transformation steps which create an executable parallel program.

In the following, we present the parallel programming model of CM-tasks in Section
2 and discuss the programming support in Section 3. As example applications, we con-
sider parallel Adams methods [16] which are solvers for systems of ordinary differential
equations (ODEs) with potential method parallelism and show experimental results in
Section 4. Section 5 discusses related work and Section 6 concludes.

2 Programming Model of CM-Tasks

The CM-task programming model exhibits two levels of parallelism: an upper level
that captures the coarse-grain task structure of the application and a lower level that
expresses parallelism within the tasks of the upper level. A CM-task program consists
of a collection of CM-tasks which form the tasks of the upper level. Each CM-task is
implemented in a way that allows its execution on an arbitrary number of processors.
A CM-task can be a parallel module performing parallel computations (basic CM-task)
or can have an internal structure activating other CM-tasks (composed CM-task). The
internal parallelism of basic CM-tasks is realized by an SPMD programming approach;
message passing may be used for distributed memory platforms while an implementa-
tion based on Pthreads or OpenMP may be advantageous on clusters with large SMP
nodes. But within one CM-task program, the same SPMD model for the basic CM-tasks
is used. In this article, we assume that CM-tasks are based on message passing using

294 J. Dümmler, T. Rauber, and G. Rünger

MPI and have an internal data distribution for each of their input and output variables.
On the upper level, the CM-tasks of the same parallel program can cooperate with each
other in two different ways:

1) P-relation: CM-tasks A and B have a precedence relation (P-relation) if CM-task
B requires input data from CM-task A before it can start its execution. This relation
is not symmetric and is denoted by AδP B.

2) C-relation: CM-tasks A and B have a communication relation (C-relation) if A
and B have to exchange data during their execution to be able to continue their
execution correctly. This relation is symmetric and is denoted by AδCB.

In contrast, previous programming models based on M-tasks allow only P-relations
between the tasks. The P- and C-relations determine some constraints on the potential
execution order of CM-tasks:

• If there is a P-relation between two CM-tasks A and B, they have to be executed
one after another. If B expects its input data in another data distribution as it is
produced by A, a re-distribution operation has to be used to make the data available
in the distribution expected. This re-distribution has to capture the situation that the
processor sets executing A and B are not identical and may even be disjoint.

• If two CM-tasks A and B have a C-relation, both tasks have to be executed concur-
rently to realize the specified data exchange during their execution. Therefore, A and
B are executed on disjoint sets of processors and cannot be executed one after another.

• Due to the constraints on CM-tasks with C-relations to be executed at the same time
and for CM-tasks with P-relation to be executed one after another, there cannot be
both a P-relation and a C-relation between two CM-tasks.

• If there is no P-relation and no C-relation between two CM-tasks A and B, they can
be executed concurrently to each other but also one after another.

2 4M M

M

M1

3M

5

M6 7M M8

9M

P

P

P P P

PP
P

P P

PP

M−tasks

C C

P PP

P PP

CM CM2 4

CM1

CM 3

CM5

CM−tasks

Fig. 1. M-task graph (left) with P-relations and
CM-task graph (right) with P- and C-relations

A CM-task program can be rep-
resented as a CM-task graph G =
(V, E) where the set of nodes V =
{A1, . . . , An} represent the CM-tasks.
The edges are composed of two sets E =
Ec ∪ Ep with Ec ∩ Ep = ∅; Ep con-
tains directed edges and represents the P-
relations between CM-tasks; Ec contains
bidirectional edges and represents the C-
relations between CM-tasks.

Figure 1 illustrates an M-task graph
(left) and a CM-task graph (right) for a
typical task graph structure occurring in
time stepping methods, e.g. for the solu-
tion of ODEs. The M-task graph captures
two time steps where M-tasks M2, M3,

and M4 perform independent computations within one time step and the tasks M6, M7,
and M8 perform analogous computations for the next time step. In between, M5 com-
bines the results, e.g. for error control or information exchange. In the M-task model

Communicating Multiprocessor-Tasks 295

(with P-relations only), M2 and M6 cannot be combined because the result of M2 is
used by M5. In the CM-task model, such combinations are possible, see Figure 1 (right).
The CM-tasks CM2, CM3, and CM4 are used to perform the independent computa-
tions within a series of time steps and to combine the results at the end of each time
step. Data exchanges with other program parts are captured by C-relations.

The CM-task graph of a CM-task program illustrates constraints on the execution
order. Different execution orders are possible, but will usually result in different execu-
tion times. The goal is to find a schedule and mapping for the CM-tasks of one program
which fulfills the constraints given by the CM-task graph and leads to a minimum exe-
cution time on a given parallel execution platform.

3 Programming Support

To support the development of CM-task programs, a specification language, a cost
model, and a transformation framework with support tools have been developed.

3.1 Specification Language

The specification language is used to describe the upper-level of CM-task programs by
giving a list of CM-task declarations. The dependencies (P-relations) and interactions
(C-relations) between CM-tasks are expressed by variables which carry the information
to be communicated. For a P-relation between CM-tasks A and B, specific variables
are produced by A as output data and are required by B as input data. For a C-relation
between CM-tasks A and B, specific variables are exchanged between A and B or are
sent from A to B (or from B to A) during the execution of A and B.

A CM-task specification of an application consists of data type declarations, data
distribution type declarations, declarations of CM-tasks supplied by the user (basic
CM-tasks), and definitions of CM-task graphs (composed CM-tasks). As data types we
consider scalars and multi-dimensional array structures. For the data distribution, arbi-
trary block-cyclic and replicated distributions over multi-dimensional processor meshes
are available. The specification contains only the interface definition of the CM-tasks.
The implementation of the basic CM-tasks are provided separately by the programmer
using the corresponding data distribution.

The declaration of a basic CM-task starts with the keyword cmtask followed by a
unique name and two parameter lists: an input/output parameter list in round brackets
for variables that are communicated over the P-relations at the beginning or the end of
the CM-task and a communication parameter list in square brackets for variables that
are exchanged during the execution of the CM-task. Each parameter has a name and a
data type. The input/output parameters additionally have an access type (in, out, inout)
and array variables have a data distribution type. An estimation of the execution time
based on the cost model, see Subsection 3.2, can also be specified.

Composed CM-tasks are defined by using the keyword cmgraph followed by the
name and the input/output parameter list similar to the parameters for basic CM-tasks.
One composed CM-task is defined as the main entrance point of the CM-task program;
this CM-task is denoted by using the keyword cmmain instead of cmgraph. The body

296 J. Dümmler, T. Rauber, and G. Rünger

Listing 1. Specification program for the PAB method

c o n s t K=8, n=320000;
t y p e vector = array [n] o f d o u b l e;

d i s t r i b vector:replic = [REPLIC(p)];
cmtask pab stage (stage:int:in, xs,xe ,h: d o u b l e:inout ,

yps:vector:inout:replic)[xchg:vector] with runt ime
n/p∗ T eval +(2∗ K+1)∗n/p∗ T op + T mb (p, n/p);

cmmain pab (xs,xe,h: d o u b l e:in, yps:vector[K]: inout:replic) {
var vecxchg : vector;
p a r f o r (i = 0:K−1) {

pab stage (i, xs, xe , h, yps[i])[vecxchg]; } }

of composed CM-tasks may include the declaration of local variables using the keyword
var. Loops and conditional statements are available to define the internal task structure
of composed CM-tasks. Different types of loop structures are supported: sequential for
and while-loops can be used to define the sequential execution of CM-tasks. Parallel
parfor-loops can be used to activate a set of CM-tasks that are executed concurrently
on disjoint subsets of processors. The iteration space of the for and parfor-loops has to
be known at compile time (constant loop bounds) whereas the while-loop contains an
estimation of executed iterations. Conditionals are expressed by using the keyword if
and may contain an optional else branch.

The activation of a CM-task is specified by giving the name of the CM-task, an
input/output parameter list (for the P-relations), and a communication parameter list
(for the C-relations). The P-relations and C-relations of a CM-task graph are defined
implicitly by using variable names in the parameter lists. The transformation steps of
the framework annotate additional information to the composed CM-task definitions
including the explicit specification of the relations, scheduling and load balancing deci-
sions, and information about necessary data re-distribution operations; see Subsection
3.3 for more details.

Example. As an example for scientific applications that can benefit from the CM-task
programming model we consider parallel Adams methods which are solution meth-
ods for ordinary differential equations (ODEs). These methods have been developed
for a parallel implementation in [20] and include the explicit parallel Adams-Bashforth
(PAB) methods as well as the implicit parallel Adams-Moulton (PAM) methods. Com-
bining the PAB method with the PAM method in a predictor-corrector scheme results
in an implicit ODE solver (PABM) with fixed point iteration using the PAB method as
predictor. In [16], a detailed description of a parallel implementation is given.

Both, the PAB and PABM methods compute a fixed number K of stage vectors in
each time step which are then combined to compute the final solution vector of the
time step. In the M-task model, the stage vectors of one time step can be computed by
separate M-tasks which are executed concurrently by disjoint sets of processors. This
has the advantage that the internal communication of the M-tasks (which is dominated
by a gather operation, e.g. MPI Allgatherv()) is restricted to a subset of the processors.

Communicating Multiprocessor-Tasks 297

in
te

rn
al

 c
om

m
un

ic
at

io
n

external communication

C C C2 31

9

8

1 4 7

3 6

52

Fig. 2. Orthogonal communication between CM-tasks: Processor subsets Ci with C1 = {1, 2, 3},
C2 = {4, 5, 6} and C3 = {7, 8, 9} are used for executing CM-task CMi, i = 1, 2, 3. Orthogonal
communication for communication between CM-tasks is performed within the subsets {1, 4, 7},
{2, 5, 8}, and {3, 6, 9}.

At the end of each time step, global communication is required to construct the solution
vector of the time step. For x time steps, the total number of M-tasks is x · K . Using
the CM-task model, it is now possible to define CM-tasks such that one CM-task is
responsible for the computation of the corresponding stage vectors in all x consecutive
time steps, i.e. a total number of K CM-tasks is used, independently from the number
of time steps. This enables the use of orthogonal communication between the CM-tasks
at the end of each time step to construct the solution vector of the time step. For many
array-based algorithms from scientific computing with potential CM-task parallelism,
this can reduce the communication overhead tremendously.

The term orthogonal communication denotes a communication pattern for proces-
sors arranged in a two-dimensional mesh structure and divided in two different ways
into subsets of processors with corresponding communicators. The first division into
subsets of processors C1, . . . , CK is used to execute CM-tasks CM1, . . . , CMK in par-
allel, each one executing one CM-task. The internal communication of CM-task CMi

is executed within subset Ci, i = 1, . . .K . The second division into subsets results
by building new subsets across the subsets C1, . . . , CK ; these orthogonal sets of pro-
cessors contain one processor of each of the subsets C1, . . . , CK and are used for the
communication between concurrently running CM-tasks, see Figure 2 for an illustra-
tion. In the example, the second communicator is used for the data exchange after each
time step using a multi-broadcast operation and includes all processors with the same
rank within the first communicator.

Listing 1 shows the specification program for the PAB method with K = 8 stage
vectors for an ODE of size n = 320000. For the replicated storage of the stage vectors a
data type vector and a distribution type replic (for replicated distribution) are de-
clared. The CM-task that computes the stage vectors is called pab stage and requires
the stage number stage, the starting time xs, the ending time xe, and the step size h
as an input. The parameter yps inputs the initial stage vector and outputs the final result
after all time steps have been computed. The communication parameter xchg is used to
exchange information with the CM-tasks computing the other stage vectors after each
time step. The cost information provided is discussed in Subsection 3.2. The composed

298 J. Dümmler, T. Rauber, and G. Rünger

CM-task pab is the main part of the application. It consists of a parallel loop that creates
K independent CM-taskspab stage. Because all loop iterations access the same local
variable vecxchg, there is an implicit C-relation between each pair of iterations.

3.2 Cost Model

The specification language is embedded into a compiler framework which supports de-
sign decisions for the parallel execution on a specific execution platform, like the execu-
tion order of independent CM-tasks, assigning processors to CM-tasks, and determining
required data re-distributions between cooperating CM-tasks. The design decisions are
based on estimated costs for the execution of CM-tasks and the communication between
them. Usually, different execution orders are possible for a given specification program,
and each possible execution order may result in different estimated costs. The compiler
framework selects the execution with the smallest estimated costs for the execution plat-
form considered.

The cost model is based on symbolic runtime formulas which estimate the expected
execution time of CM-tasks for a specific set of processors on the given machine and for
a specific size of the input data. The cost model captures the expected execution times
of the basic CM-tasks and the communication costs resulting from data re-distribution
operations induced by the P-relations. The costs for a basic CM-task consist of compu-
tation costs for the arithmetic operations and communication costs for internal commu-
nication; also costs for data exchanges as specified by the C-relations are considered.
The data re-distribution costs depend on the size of transmitted data in bytes and on the
platform dependent startup time and byte-transfer time; the size of transmitted data can
be computed within the framework based on the data types and data distribution types.
Costs for composed CM-tasks can be built up from costs of basic CM-tasks and com-
munication times for P-relations and C-relations according to the hierarchical CM-task
structure: For a concurrent execution of CM-tasks CM1 and CM2, the maximum of
their cost formulas is taken; for a consecutive execution, the sum of their cost formulas
is used. The costs for the CM-task cmmain determine the costs for the entire program.

The symbolic runtime formulas are based on application dependent information and
platform dependent information. The application dependent information includes the
number of arithmetic operations and the number and types of communication opera-
tions. The platform dependent information includes the average execution time for an
arithmetic operation and formulas describing the execution time for the communication
operations depending on the number of transmitted data items and the number of par-
ticipating processors. The cost information is included in the CM-task specification and
can be provided manually by the programmer if simple cost formulas are used or can be
extracted automatically by a compiler tool by inspecting the internal SPMD structure
of the CM-task implementations.

In [11] it has been shown that symbolic runtime formulas can give realistic predic-
tions of the runtime of the PAB and the PABM method. For the CM-task pab stage
of the PAB method the cost formula Tpabstage(n, p) = (n/p ∗ T eval + (2 ∗ K +
1) ∗ n/p ∗ T op) + T mb(p, n/p) has been derived, see Listing 1. In this formula,
K represents the number of stage vectors, n is the size of the ODE system, p is the
number of processors, T eval is the time to evaluate a single component of the ODE

Communicating Multiprocessor-Tasks 299

Fig. 3. Overview of the transformation framework

system, T op is the time to execute an arithmetic operation and T mb is the runtime of
a multi-broadcast operation (MPI Allgatherv()) depending on the number of processors
and the size of the data. All values, except p, are known at compile-time. This results in
the cost formula K · Tpabstage(n, p) for one time step of a data parallel version of the
PAB method executing all stage vectors one after another by all processors.

3.3 Transformation Framework

A compiler framework is provided to transform CM-task programs specified in the
specification language into executable parallel MPI programs. The framework inte-
grates scheduling and load balancing methods, data distribution methods, as well as
a generation process for the final MPI program. The framework supports two different
approaches to generate parallel programs:

• The static approach of the framework generates an MPI program (in C) with a
fixed schedule, i.e. the execution order of the CM-tasks and the size of the processor
groups used for the execution is fixed at compile time and cannot be changed at
runtime. The fixed schedule is created for a given problem instance (e.g. a fixed

300 J. Dümmler, T. Rauber, and G. Rünger

system size) and a specific target platform with a fixed number of processors. This
approach is especially suited for dedicated homogeneous platforms and requires an
accurate cost model for a good schedule.

• The semi-dynamic approach of the framework generates an MPI program (in C)
with an initial plan for an execution order of the CM-tasks and an initial size of
the processor groups used for the execution. This initial plan is based on a fixed
schedule for a default problem instance and a default target platform. The MPI pro-
gram generated allows the integration of a load balancing module that is able to
arrange dynamic reorganizations of the processor groups executing CM-tasks based
on observations of the dynamic behavior of the execution progress and possible load
imbalances. Thus, semi-dynamic programs are able to adapt to different problem in-
stances and varying target platforms, i.e., they make use of additional processors, if
available, and compensate for load imbalances resulting from platform heterogene-
ity or an uneven distribution of workload. This approach is especially suited for
non-dedicated heterogeneous platforms.

The input to the framework consists of (a) a description of the CM-task application in
the specification language and (b) the platform dependent part of the cost information
in a separate machine specification. The generated program uses implementations of
basic CM-tasks that are provided by the programmer as parallel MPI functions. The
interface of each of these MPI functions has to match the specification, i.e., the number
and types of the parameters have to match; the data distribution types are used to select
appropriate re-distribution operations. At runtime, the generated program provides two
kinds of communicators to the basic CM-tasks: (a) a group communicator for group
internal communication and (b) a cluster communicator that includes all processes that
execute CM-tasks that are interconnected by C-relations for communication between
running CM-tasks.

The programs generated by the semi-dynamic approach additionally use a load bal-
ancing library and a data re-distribution library. The load balancing library is initialized
at program start with the CM-task graph of the application and is invoked during the
execution of the application with measured runtimes of executed CM-tasks and may
output an adapted schedule. The data re-distribution library provides runtime support
for copying and re-distributing data structures.

The transformation framework includes a number of transformation steps where each
step generates new information and adds it to the application description. Additionally,
support tools are provided to visualize the progress of the framework and to give the
programmer a possibility to interact with the framework, e.g., to influence or change
decisions made by the framework. Figure 3 gives an overview of the transformation
system. In the following, we describe the transformation steps in more detail.

The Dataflow Analyzer uses a data dependency analysis to detect the P-relations
and C-relations that are defined implicitly in the initial specification program. For the
P-relations, three different kinds of data dependencies are considered between the in-
put/output parameter lists of the CM-tasks forming a CM-task graph: a WR data de-
pendency occurs when a CM-task A writes a variable that is subsequently read by a
CM-task B; a RW data dependency emerges when a CM-task A reads a variable that is
subsequently written by a CM-task B; a WW data dependency arises when CM-tasks
A and B subsequently write to the same variable. In each of these cases a P-relation

Communicating Multiprocessor-Tasks 301

between CM-tasks A and B is inserted; for WR data dependencies this P-relation is
additionally annotated with the name of the variable, denoting that a data re-distribution
between A and B might be necessary.

The C-relations of a CM-task graph are constructed using an analysis of the commu-
nication parameter lists of the CM-tasks. Two cases are considered: (a) two CM-tasks
A and B access the same communication variable denoting a point-to-point commu-
nication between A and B during their execution and therefore a single C-relation is
created; (b) more than two CM-tasks access the same communication variable resulting
in collective communication between these CM-tasks and therefore C-relations between
each pair of these CM-tasks are inserted.

The Scheduler determines a global hierarchical schedule consisting of a starting
point in time and an executing processor group for each CM-task in a given specification
of a CM-task application. Heuristics or hand-coded scheduling can be used for the
scheduling decisions.

The Static Data Manager inserts descriptions of data re-distribution operations into
the specification language. Such a description consists of the starting point in time, the
source and target processor groups and a list of variables that should be re-distributed.
For each variable, the name, the data type and the source and target distribution type is
specified. The required data re-distribution operations are determined by an inspection
of the P-relations within each composed CM-task.

The Static Code Generator produces a static coordination program that utilizes the
MPI message passing library for the processor group management and for the real-
ization of the data re-distribution operations. The coordination program consists of an
initialization phase that creates all required communicators, a coordination function for
each composed CM-task, and a finalization procedure that disposes all created com-
municators. A coordination function may contain declarations of local variables, con-
structs to guide the control flow (if-statement, for-loop) and code to execute CM-tasks
and data re-distribution operations. The data re-distribution operations are performed in
three steps: first, all sending processors pack their data into a sending buffer; second,
the data is transmitted over the network; and third, the receiving processors unpack the
data into the appropriate memory locations.

The Semi-dynamic Data Manager contributes to the transformation process in two
ways. First, it marks the positions in the specification program where the load balancing
should be performed. By default, the marked positions are points in time where all
processors are available to allow a global restructuring and within loops to allow an
adaption of the schedule based on previous loop iterations. Second, this transformation
step decides which variable accesses are performed to the original variable and for
which accesses a copy of the original variable should be supplied. The original variable
may only be accessed by at most one CM-task at any given point in time. Write accesses
use the original variable to ensure that it always contains the most recent values. This
approach provides a flexible way to deal with a changing processor group layout without
having to recompute all required re-distribution operations at runtime.

The Semi-dynamic Code Generator produces a coordination program that consists
of a coordination function for each composed CM-task. Before starting a CM-task the
required communicators are created and the data re-distribution library is invoked to

302 J. Dümmler, T. Rauber, and G. Rünger

ensure a correct data distribution of the input data. The runtimes of the executed CM-
tasks are measured and provided to the load balancing library at the positions marked
by the previous transformation step.

4 Experimental Evaluation

In the following, we illustrate the CM-task model for solution methods of ODEs. In
particular, we consider the PAB and PABM methods that have been introduced as ex-
amples in Subsection 3.1. For the runtime tests we consider three different program
versions using a static schedule:

• The pure data parallel version computes the stage vectors one after another using all
available processors. Communication between the different stage vector computa-
tions is not required.

• The task parallel version uses K disjoint processor groups of equal size to compute
the K stage vectors in parallel. Internally, each task is executed in an SPMD fash-
ion resulting in mixed task and data parallelism for the entire program. Additional
communication operations are required at the end of each time step to exchange the
stage vectors. This communication is realized by an intra group broadcast followed
by an inter group data exchange.

• The orthogonal version uses the same task layout as the task parallel variant. The
exchange of stage vectors is performed using concurrent multi-broadcast operations
between processes with the same group rank.

The runtime tests shown are made for ODE systems that result from a spatial dis-
cretization of the 2D Brusselator equation [7]. The resulting ODE systems are sparse:
each component of the right-hand side function f of the ODE system has a fixed evalu-
ation time that is independent of the size of the ODE system; thus, the evaluation time
for the entire function f increases linearly with the size of the ODE system. The figures
show the execution time of one time step, obtained by dividing the total execution time
by the number of time steps performed. A typical integration may consist of tens of
thousands of time steps, thus leading to a large overall execution time.

Figure 4 (left) shows the runtimes for a Xeon cluster consisting of 16 dual SMP
nodes with an SCI interconnection network using ScaMPI. For two processors, no task
parallel implementation is given because at least K = 4 processors are required for
task parallelism. The runtimes for p = 24 are worse compared to the results for p = 16
because two processes need to be started on some nodes making the network interface
on these nodes a bottleneck. For p = 32 the amount of data per node decreases leading
to faster execution times. There is no speedup for the task parallel version because the
communication overhead outweighs the additional computational power.

Figure 4 (right) shows the execution times of the PABM method on the CLiC clus-
ter. This cluster is built from 528, 800 MHz, Pentium III processors connected by a
fast-Ethernet network. For this cluster, the task parallel implementation is significantly
faster than the data parallel implementation which is further improved by exploiting
orthogonal communication structures. The impressive decrease in runtime when using
concurrent multiprocessor tasks instead of data parallelism can be explained by the large
communication overhead for collective communication operations on the CLiC due to

Communicating Multiprocessor-Tasks 303

2 4 8 16 24 32 2 4 8 16 24 32 2 4 8 16 24 32
0

0.1

0.2

0.3

0.4

0.5

0.6

processors

tim
e

pe
r

st
ep

 in
 s

ec
on

ds

PAB−method with brusselator function for K=4 on Xeon cluster (SCI)

n=180000 n=320000 n=500000

data parallel
task parallel
task parallel orthogonal

8 16 32 48 64 96 128 8 16 32 48 64 96 128 8 16 32 48 64 96 128
0

50

100

150

200

250

processors

tim
e

pe
r

st
ep

 in
 s

ec
on

ds

PABM−method with brusselator function for K=8 on CLiC

n=45000 n=80000 n=180000

data parallel
task parallel
task parallel orthogonal

Fig. 4. Runtimes of one time step of the PAB method for Brusselator on SCI Xeon cluster with
K = 4 (left) and runtime of the PABM method on CLiC with K = 8 (right)

1 8 16 24 32
0

1

2

3

4

5

6

7

8

9

10

Processors

S
pe

ed
up

PAB−method with brusselator(n=2000000) for K=8 on Regatta p690

data parallel
task parallel
task parallel orthogonal

1 8 16 24 32
0

5

10

15

Processors

S
pe

ed
up

PABM−method with brusselator(n=500000) for K=8 on Regatta p690

data parallel
task parallel
task parallel orthogonal

Fig. 5. Speedups of the PAB (left) and PABM (right) methods for Brusselator on IBM Regatta
with K = 8

its interconnection network. From the figure, it can be seen that for a larger number of
processors, the task parallel implementations with orthogonal communication (as it is
supported by the CM-task model) usually leads to the fastest runtimes.

Figure 5 shows the speedups of the different program versions for the PAB and
PABM methods for an IBM Regatta system; this system uses 32, 1.7 GHz, Power4
processors per SMP node and has 41 nodes. The results show that the orthogonal pro-
gram version can outperform a data parallel execution scheme even on shared memory
platforms. The PABM method requires a higher computational effort compared to the
PAB method and therefore also higher speedups are possible. Group based communi-
cation also plays a more important role in the PABM method, leading to a decrease of
the speedups for the data parallel version for more than 16 processors.

The speedups for the PAB method on the CHiC cluster are presented in Figure 6
(left) for the sparse Brusselator system and in Figure 6 (right) for the dense Schrödinger
system. The Schrödinger system uses a right-hand side function f for which the evalua-

304 J. Dümmler, T. Rauber, and G. Rünger

1 8 16 24 32 48 64 96 128
0

1

2

3

4

5

6

7

8

Processors

S
pe

ed
up

PAB−method with brusselator(n=4500000) for K=8 on CHiC

data parallel
task parallel
task parallel orthogonal

1 8 16 24 32 48 64 96 128
0

10

20

30

40

50

60

70

80

90

100

110

Processors

S
pe

ed
up

PAB−method with schroedinger(n=160002) for K=8 on CHiC

data parallel
task parallel
task parallel orthogonal

Fig. 6. Speedups of the PAB-method with K = 8 on the CHiC with Infiniband network using a
sparse ODE system (left) and a dense ODE system (right)

tion of each component depends on all components of its argument vector and therefore
the evaluation time of the entire function f depends quadratically on the size of the ODE
system. The CHiC cluster consists of 538 dual Opteron 2218 nodes clocked at 2.6 GHz
interconnected by a 10GBit/s Infiniband network. For the benchmark tests the MVA-
PICH2 MPI library was used. The computation to communication ratio of the dense
system is much higher compared to a sparse system leading to much higher speedups.
The number of executed arithmetic operations per node is identical in all three program
versions and therefore the speedups for the dense system lie much closer together. For
the sparse system, the achieved speedups are limited because the amount of communi-
cation and computation are of the same order of magnitude.

Altogether, the results show that the orthogonal program version, as one example for
communication between CM-tasks, outperforms both other program version in almost
all cases. Especially for cluster systems with a slower interconnection network, such
as the CLiC cluster (see Figure 4 (right)) optimizations such as orthogonal task parallel
versions are required to achieve competitive performance results. But also for platforms
with a fast interconnection network like the CHiC cluster, significant performance im-
provements can be obtained, especially for a larger number of processors.

5 Related Work

In the past decade, several research groups have proposed models for mixed task and
data parallel executions with the goal to obtain parallel programs with faster execu-
tion time and better scalability properties, see [2, 18] for an overview of systems and
approaches and see [3] for a detailed investigation of the benefits of combining task
and data parallel executions. An exploitation of task and data parallelism in the context
of a parallelizing compiler with an integrated scheduler can be found in the Paradigm
project [9, 14]. The approach in this article is an extension of these approaches which
captures additional communication patterns.

Communicating Multiprocessor-Tasks 305

Other environments for mixed parallelism in scientific computing are language ex-
tensions, see [6] for an overview. In contrast to our approach, these environments leave
the task placement, i.e. the scheduling, to the programmer and do not have an ex-
plicit specification language. The Fx compiler[19] extends the HPF data parallel lan-
guage with statements that allow the partitioning of processor groups into disjoint
subgroups whose size may be determined at runtime offering a semi-dynamic execu-
tion. [4] describes a concept to combine the task parallel Fortran M with the data parallel
Fortan D or HPF to derive a mixed parallel execution. This concept allows communica-
tion between concurrently running parallel programming parts but lacks an automatic
data re-distribution between data parallel tasks. Opus[5] uses Shared Data Abstractions
(SDAs) for synchronization and communication between parallel program parts. The
Tlib library [17] is a realization of the TwoL model as runtime system.

Scheduling algorithms for computing an appropriate mix of task and data parallel
executions for M-task programs are presented in [21, 22]. For the decision, the scala-
bility characteristics of the M-tasks and the communication costs between the M-tasks
are taken into account. A comparison of different scheduling algorithms for M-task
programs is given in [13]. These scheduling algorithms cannot be applied directly to
CM-task programs, since they do not capture the C-relations between CM-tasks.

The use of skeletons to coordinate different program parts was considered within
the Lithium environment [1]. Task and data parallel skeletons are available and can be
nested within each other. Skeletons were also used in the COLTHPF[12] compiler to
create mixed parallel coordination programs providing a runtime system that controls
communication and supports the dynamic loading of additional tasks. A lot of research
has been invested in the development of the BSP (bulk synchronous parallelism) model
and there exists a programming library (Oxford BSP library) that allows the formulation
of BSP programs in an SPMD style [8]. NestStep extends the BSP model by support-
ing group-oriented parallelism by nesting of supersteps and a hierarchical processor
group concept [10]. NestStep is defined as a set of extensions to existing programming
languages like C or Java and is designed for a distributed address space.

6 Conclusions

In this paper, we have presented a parallel programming model with mixed task and data
parallelism for coding modular applications. This model is based on M-tasks where
each M-task is a parallel program part which can be executed on an arbitrary set of
processors and can be hierarchically decomposed into further M-tasks. Programming
models for M-tasks usually consider task graphs with control or data dependencies
(precedence constraints). We have extended the M-task model by communication
between concurrently running M-tasks. The model is able to capture communication
between M-tasks, thus providing a flexible way to structure complex modular applica-
tions. In particular, the model is able to structure the communication between M-tasks
such that orthogonal communication patterns can be exploited. Experimental results for
solution methods for ODEs show a significant performance improvement compared to
data parallel or pure task parallel execution schemes. Another area of examples which
are expected to benefit from the CM-task model are modular simulation algorithms,

306 J. Dümmler, T. Rauber, and G. Rünger

e.g., from atmospheric simulation. For the implementation of efficient programs in the
CM-task model, we have proposed a step-wise transformation process that is realized
by a transformation framework. This framework supports the development of efficient
CM-task programs by an automated transformation process and a toolset of interacting
software tools to transform a specification into an executable program.

References

[1] Aldinucci, M., Danelutto, M., Teti, P.: An advanced environment supporting structured
parallel programming in Java. Future Generation Computer Systems 19(5), 611–626 (2003)

[2] Bal, H., Haines, M.: Approaches for Integrating Task and Data Parallelism. IEEE Concur-
rency 6(3), 74–84 (1998)

[3] Chakrabarti, S., Demmel, J., Yelick, K.: Modeling the benefits of mixed data and task par-
allelism. In: Symposium on Parallel Algorithms and Architecture, pp. 74–83 (1995)

[4] Chandy, M., Foster, I., Kennedy, K., Koelbel, C., Tseng, C.-W.: Integrated support for task
and data parallelism. The Int. Journal of Supercomputer Applications 8(2), 80–98 (1994)

[5] Chapman, B., Haines, M., Mehrota, P., Zima, H., Van Rosendale, J.: Opus: A coordination
language for multidisciplinary applications. Sci. Program. 6(4), 345–362 (1997)

[6] Fink, S.J.: A Programming Model for Block-Structured Scientific Calculations on SMP
Clusters. PhD thesis, University of California, San Diego (1998)

[7] Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff
Problems. Springer, Berlin (1993)

[8] Hill, M., McColl, W., Skillicorn, D.: Questions and Answers about BSP. Scientific Pro-
gramming 6(3), 249–274 (1997)

[9] Joisha, P., Banerjee, P.: PARADIGM (version 2.0): A New HPF Compilation System. In:
Proc. 1999 International Parallel Processing Symposium (IPPS 1999) (1999)

[10] Keßler, C.W.: NestStep: Nested Parallelism and Virtual Shared Memory for the BSP model.
The Journal of Supercomputing 17, 245–262 (2001)

[11] Kühnemann, M., Rauber, T., Rünger, G.: Optimizing MPI Collective Communication by
Orthogonal Structures. Journal of Cluster Computing 9(3), 257–279 (2006)

[12] Orlando, S., Palmerini, P., Perego, R.: Coordinating HPF programs to mix task and data par-
allelism. In: SAC 2000: Proceedings of the 2000 ACM symposium on Applied computing,
pp. 240–247. ACM Press, New York (2000)

[13] Radulescu, A., Nicolescu, C., van Gemund, A., Jonker, P.P.: CPR: Mixed task and data par-
allel scheduling for distributed systems. In: Proceedings of the 15th International Parallel
and Distributed Symposium (2001)

[14] Ramaswamy, S.: Simultaneous Exploitation of Task and Data Parallelism in Regular Sci-
entific Applications. PhD thesis, University of Illinois at Urbana-Champaign (1996)

[15] Rauber, T., Rünger, G.: A Transformation Approach to Derive Efficient Parallel Implemen-
tations. IEEE Transactions on Software Engineering 26(4), 315–339 (2000)

[16] Rauber, T., Rünger, G.: Execution Schemes for Parallel Adams Methods. In: Danelutto,
M., Vanneschi, M., Laforenza, D. (eds.) Euro-Par 2004. LNCS, vol. 3149, pp. 708–717.
Springer, Heidelberg (2004)

[17] Rauber, T., Rünger, G.: Tlib - A Library to Support Programming with Hierarchical Multi-
Processor Tasks. J. of Parallel and Distributed Computing 65(3), 347–360 (2005)

[18] Skillicorn, D., Talia, D.: Models and languages for parallel computation. ACM Computing
Surveys 30(2), 123–169 (1998)

[19] Subhlok, J., Yang, B.: A new model for integrated nested task and data parallel program-
ming. In: Proceedings of the sixth ACM SIGPLAN symposium on Principles and practice
of parallel programming, pp. 1–12. ACM Press, New York (1997)

Communicating Multiprocessor-Tasks 307

[20] van der Houwen, P.J., Messina, E.: Parallel Adams Methods. J. of Comp. and App. Mathe-
matics 101, 153–165 (1999)

[21] Vydyanathan, N., Krishnamoorthy, S., Sabin, G., Catalyurek, U., Kurc, T., Sadayappan, P.,
Saltz, J.: An integrated approach for processor allocation and scheduling of mixed-parallel
applications. In: Proc. of the 2006 International Conference on Parallel Processing (ICPP
2006). IEEE, Los Alamitos (2006)

[22] Vydyanathan, N., Krishnamoorthy, S., Sabin, G., Catalyurek, U., Kurc, T., Sadayappan, P.,
Saltz, J.: Locality conscious processor allocation and scheduling for mixed parallel appli-
cations. In: Proc. of the 2006 IEEE Int. Conf. on Cluster Computing. IEEE, Los Alamitos
(2006)

An Effective Automated Approach to

Specialization of Code

Minhaj Ahmad Khan, H.-P. Charles, and D. Barthou

University of Versailles-Saint-Quentin-en-Yvelines, France

Abstract. Application performance is heavily dependent on the com-
piler optimizations. Modern compilers rely largely on the information
made available to them at the time of compilation. In this regard, spe-
cializing the code according to input values is an effective way to com-
municate necessary information to the compiler.

However, the static specialization suffers from possible code explosion
and dynamic specialization requires runtime compilation activities that
may degrade the overall performance of the application.

This article proposes an automated approach for specializing code that
is able to address both the problems of code size increase and the over-
head of runtime activities. We first obtain optimized code through spe-
cialization performed at static compile time and then generate a template
that can work for a large set of values through runtime specialization.

Our experiments show significant improvement for different SPEC
benchmarks on Itanium-II(IA-64) and Pentium-IV processors using icc
and gcc compilers.

1 Introduction

The classical static compilation chain is yet unable to reach the peak performance
proposed by modern architectures like Itanium. The main reason comes from the
fact that an increasing part of the performance is driven by dynamic information
which is only available during execution of the application. To obtain better code
quality, a modern compiler first takes into account input data sets, and then
optimizes code according to this information.

Static specialization of integer parameters provides to the compiler the op-
portunity to optimize code accordingly, but it comes at the expense of large
code size. A wide range of optimizations can take advantage of this kind of val-
ues: branch prediction, accurate prefetch distances (short loops do not have the
same prefetch distance as loops with large iteration count), constant propaga-
tion, dead-code elimination, and complex optimizations including loop unrolling
and software pipelining etc. can then be performed by the compiler.

The dynamic behavior of the applications and unavailability of information
at static compile time impact the (static) compilation sequence and result in
specialization of code to be performed at runtime. The code is specialized and
optimized during execution of the program. It is mostly achieved by dynamic
code generation systems [1,2,3,4,5] and offline partial evaluators [6,7]. These

V. Adve, M.J. Garzarán, and P. Petersen (Eds.): LCPC 2007, LNCS 5234, pp. 308–322, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

An Effective Automated Approach to Specialization of Code 309

void smvp (int nodes, params..) {
for (i = 0; i < nodes; i++) {
Anext = Aindex[i];
Alast = Aindex[i + 1];
sum0 = A[Anext][0][0]*v[i][0] + A[Anext][0][1]*v[i][1] +
A[Anext][0][2]*v[i][2];
sum1 = A[Anext][1][0]*v[i][0] + A[Anext][1][1]*v[i][1] +
A[Anext][1][2]*v[i][2];
sum2 = A[Anext][2][0]*v[i][0] + A[Anext][2][1]*v[i][1] +
A[Anext][2][2]*v[i][2];
Anext++;
...

}//end for
}//end function

Fig. 1. 183.equake benchmark

systems perform runtime activities including analysis and/or computations for
code generation and optimizations. All these activities incur a large overhead
which may require hundreds of calls to be amortized.

For the hybrid specialization approach proposed in this paper, we do not
require such time-consuming activities. The runtime specialization is performed
for a limited number of instructions in a generic binary template. This template
is generated during static compilation and is highly optimized since we expose
some of the unknown values in the source code to the compiler. This step is
similar to static specialization. The template is then adapted to new values
during execution thereby avoiding code explosion as in other existing specializers.
This step is similar to dynamic specialization with a very small runtime overhead.
We have applied our method to different benchmarks from SPEC CPU2000 [8]
suite.

The remainder of the paper is organized as follows. Section 2 describes the
main principle on which hybrid specialization is based. Section 3 provides the
required context that is essential to apply this technique and Section 4 elaborates
the main steps included in the algorithm. The implementation details describing
the input and output of each phase are provided in Section 5. Sections 6 and 7
present respectively the experimental results including the overhead incurred. A
comparison with other technologies has been given in Section 8 before concluding
in Section 9.

2 Principle of Hybrid Specialization

Consider the code in Figure 1 of the most time-consuming function smvp from
183.equake benchmark. Code specialization is oriented towards improving the
performance by simplification of computations (through constant propagation,
dead code elimination), or by triggering other complex optimizations such as
software pipelining. It however may result in code explosion if performed at

310 M.A. Khan, H.-P. Charles, and D. Barthou

static compile time. Although the runtime optimizations may take advantage of
known input, the cost of these optimizations makes them inappropriate to be
performed at runtime.

If the parameter nodes is specialized with constants from 1 to 8192, we ob-
tain different versions of code. We categorize them into different classes where
each class differs from others in terms of optimizations but contains versions
which are similar in optimizations. The versions in a class must differ only by
some immediate constants. These differences occur due to different values of a
specialized parameter.

Fig. 2. Classes obtained for 183.equake benchmark

Analyzing object code generated through Intel compiler icc V9, we find only 31
classes of code. Figure 2 shows the classes obtained after specialization together
with the number of versions in each class. Any version in the class can serve as a
template which can be instantiated at runtime for many values. Such behavior of
compilers is similar for other benchmarks as well, even for different architectures.

The principle of the optimization we propose relies on the fact that while
versioning functions for different parameter values, the compiler does not gen-
erate completely different codes. For some parameter value range, these codes
have the same instructions and only differ by some constants. The value range
to consider can be defined by several approaches: profiling, user-input, or static
analysis. The idea is to build a binary template, which if instantiated with the
parameter values, is equivalent to the versioned code. If the template can be
computed at compile time, the instantiation can be performed at run-time with
little overhead. We therefore have the best of versioning and dynamic special-
ization, i.e., we take advantage of complex static compiler optimizations and
yet obtain the performance of versioned code without paying the cost of code
expansion.

The hybrid specialization approach is depicted in Figure 3. The first step
consists of versioning a function for appropriate parameters. From these versions,
a template is extracted if this is possible. The template generation also includes
the generation of a dynamic specializer together with specialized data for the
template. The final hybrid code therefore comprises template versions, dynamic
specializer and the original compiled code (as a fallback).

An Effective Automated Approach to Specialization of Code 311

Code Candidates (After Profiling)

Code Specialization

Specialized Object
Code

Template Generation

Binary
Template

Hybridization

 A : Binary Template for
Runtime Specialization

Dynamic
Specializer

Hybrid Function Code

Binary
Function Code

 B: Standard Version

Fig. 3. Overview of Hybrid Specialization

3 Template Creation and Efficient Runtime Specialization

We define the notion of template as an abstraction of binary code with some
slots (locations in the binary code) corresponding to parameters specialized.
These slots can be filled with the constant values instantiating the template.
Let TX1...Xn denote a binary template with slots X1, . . . , Xn. The instanti-
ation of this template with the constant integer values v1, . . . , vn is written
TX1...Xn [X1/v1, . . . , Xn/vn], and corresponds to a binary code where all slots
in the template have been filled with values. The complexity of instantiation of
a template is O(n) which is very low as compared to full code generation and
optimizations performed at runtime.

3.1 Equivalence of Specialized Binaries

Now consider the code of a function F to be optimized, we assume without
loss of generality that F takes only one integer parameter X . This function is
compiled into a binary function C(F)(X), where C denotes the optimization
sequence and code generation performed by the compiler. By versioning F with
a value v, the compiler generates a binary Bv = C(Fv), performing better than
C(F)(v). We define an equivalence between specialized binaries:

Definition 1. Given two specialized binaries Bv and Bv′ , Bv is equivalent to
Bv′ if there exists a template TX1...Xn and functions f1 . . . fn such that

TX1...Xn [X1/f1(v), . . . , Xn/fn(v)] = Bv, TX1...Xn [X1/f1(v
′), . . . , Xn/fn(v′)] = Bv′ .

312 M.A. Khan, H.-P. Charles, and D. Barthou

In other words, the two specialized binaries are equivalent if they are instanti-
ations of the same template with the same function applied to their specialized
value. Let R denote this equivalence.

This is indeed an equivalence: reflexivity and symmetry are obvious, and for the
transitivity: Assume BvRBv′ and Bv′RBv′′ , for v �= v′′, this means that there
exist two templates TX1...Xn and TY1...Ym , and two sets of functions f1 . . . fn and
g1 . . . gm such that:

TX1...Xn [X1/f1(v), . . . , Xn/fn(v)] = Bv

TX1...Xn [X1/f1(v′), . . . , Xn/fn(v′)] = Bv′

TY1...Ym [Y1/g1(v′), . . . , Xm/gm(v′)] = Bv′

TY1...Ym [Y1/g1(v′′), . . . , Xm/gm(v′′)] = Bv′′

Assume, without loss of generality, that the first p slots Y1, . . . , Yp correspond
to the slots X1, . . . , Xp. For these slots, we deduce from the preceding equations
that fi(v′) = gi(v′), for all i ∈ [1..p]. We define m−p+1 new functions on v′ and
v′′ by fi−p−1+n(v′) = gi(v′), fi−p−1+n(v′′) = gi(v′′) for i ∈ [p + 1..m]. Finally,
we define these functions for v as the value in the binary Bv taken in the slot Yi,
i ∈ [p + 1..m]. To conclude, we have defined a new template TX1...XnYm−p−1...Ym

such that the instantiation of this template with the functions fi in v, v′ and v′′

gives the binaries Bv, Bv′ and Bv′′ . These three binaries are equivalent, and R
is an equivalence relation.

Computing the minimum number of templates necessary to account for all
specialized binaries Bv when v ∈ [lb, ub] boils down to computing the equivalence
classes {Bv, v ∈ [lb, ub]}/R incrementally. Given below is the relation between
specialized binaries and templates:

Interval of values Specialized binaries Binary templates
[lb, ub] −→ {Bv, v ∈ [lb, ub]} ⇀↽ {Bv, v ∈ [lb, ub]}/R

As shown in the motivating example, there are many more specialized binaries
than binary templates. Given the range of values to specialize for, compilation of
the specialized binaries from the original code is achieved by a static compiler.
Computation of the templates is likewise at static compile time. Instantiation of
the templates then corresponds to the efficient dynamic specialization, performed
at run-time.

3.2 Minimizing Overhead of Template Specialization

The overhead of template specialization is reduced through the generation of
template at static compile time together with generation of specialized data
requiring no calculation at runtime.

To compute the specialized data for instantiation of templates, we proceed
after having found the classes. For each class computed from specialized binaries,
let vt = v1 be first value for the class whose version will act as a template.

For values v2, v3, . . . , vn, occurring in the same equivalence class (producing
n versions in the class),

An Effective Automated Approach to Specialization of Code 313

– Initialize a linear data list with immediate values which exist in version
specialized with vt and do not exist in version specialized with v2.

– Insert into the data list the values that differ (at corresponding locations)
in the version specialized with vt and those in versions specialized with
v2, v3, . . . , vn.

– Generate the formula corresponding to the starting index of the element for
the class in the data list.

By using this specialized data, it is easier to instantiate the template without
calculating the runtime values.

4 Optimization Algorithm

We describe in this section the main steps that are required to perform hybrid
specialization, incorporating both static and dynamic specializations. After ob-
taining intervals of values of the parameters, the following steps are performed.

1. Code specialization and analysis of object code;
Different specialized versions of the function may be generated where its
integer parameters are replaced by constant values. The specialized object
code is analyzed to obtain a template that can be used for a large range of
values. This search is performed within profiled values to meet the conditions
described in Section 3. The equivalent specialized code versions differ in
immediate constants being used as operands in object code. The instructions
which differ in these versions will be termed as candidate instructions.

2. Generating statically specialized data list;
The runtime specialization overhead is minimum if necessary data required
for specialization of binary code has already been computed at static com-
pile time. This specialized data (to be inserted into binary instructions) can
be obtained for values in the interval corresponding to each candidate in-
struction as given in Section 3.2. The specialized data approach not only
transfers the complexity of runtime computations to static compile time but
also reduces the overhead of possible code size increase.

3. Generation of runtime specializer and template;
For the classes containing more than one value, a runtime specializer is gen-
erated. The runtime specializer contains the code to search for the proper
template and subsequently modify binary instructions of that template. In-
formation regarding locations of each candidate instruction can be easily
gathered from object code. The template in hybrid specialization therefore
comprises all the candidate instructions to be modified during execution.
The modification of instructions can then be accomplished by self-modifying
code.

This approach ensures that the cost of runtime code generation/modification
is far less than that in existing specializers and code generators. The opti-
mizations on the template have already been performed at static compile
time due to specialization of code.

314 M.A. Khan, H.-P. Charles, and D. Barthou

5 Implementation Framework and Experimentation

The hybrid specialization approach (depicted in Figure 3) has been automated
for function parameters of integral data types in HySpec[5] framework. It takes
input configuration file containing the functions, parameters, the intervals and
compilation parameters. The intervals can be specified based on application-
knowledge, otherwise code is first instrumented at routine level with HySpec to
obtain the value profile [9] for integral parameters of the functions.

In addition to instrumentation for value profiling, HySpec performs different
steps to generate hybridly specialized code which are given below.

5.1 Code Specialization and Object Code Analysis

Within interval values, code is specialized by exposing the values of function
parameters. The code is parsed1 to generate another specialized version. This
is followed by an analysis of object code to search for classes of code, so that
within a class the versions differ only in immediate constants. For example, for

Table 1. Object code generated over Itanium-II and Pentium-IV

Value IA-64 P-IV

nodes=19 cmp.ge.unc p6,p0=19,r54 cmpl $19, %eax
nodes=17 cmp.ge.unc p6,p0=17,r54 cmpl $17, %eax

183.equake, the object code generated by icc compiler, when specialized with
the value nodes=17 and the one generated for nodes=19 differs only in some
constants as shown in Table 1. These instructions correspond to the value of
specialized parameter.

5.2 Generation of Specialized Data and Runtime Specializer

Automatic generation of specialized data and the runtime specializer renders
hybrid specialization to be a declarative approach. For an interval, all the values
corresponding to each instruction differing in equivalent versions are used to
generate a linear array of specialized data. This array represents the actual
values with which the binary code is specialized during execution. The offset of
data from where the values start for an instance of a template, are also computed
at static compile time.

The template can be specialized by modifying instructions at runtime. This
is accomplished by the runtime specializer which is able to efficiently insert
values at specified locations. These locations are also calculated during analysis
of object code. As shown in Figure 4 (on the right), each invocation of Instruction
Specializer puts statically specialized data into template slots. This is followed
by activities for cache coherence (required for IA-64).

1 Only the C language is supported.

An Effective Automated Approach to Specialization of Code 315

The Instruction Specializer is implemented as a set of macros which may have
different functionality for different processors due to different instruction set ar-
chitecture. For Itanium-II, the offset contains the bundle number and instruction
number within that bundle, whereas for Pentium-IV, it contains exact offset of
the instruction to be modified.

5.3 Final Wrapper Code

Figure 4 (on the left) shows the pseudo-code for the wrapper. It first searches
for the template for which the new (runtime) value is valid. The branches in the
wrapper are used to redirect control to the proper version. For each template, the
current implementation supports dynamic specialization with a software cache
of single version. We intend to implement the software cache with multiple clones
to mitigate the problem of parameters with repeated patterns.

static long old Param[]={...}; Offset = Location of candidate inst.
void WrapperFunction (Parameters) Data = Pointer to specialized data

Let TN = FoundTemplate BA = Function’s Base Address
if TN>0 then void BinaryTemplateSpecializer{

if Param <> old Param[TN] InstSpec(BA+offset 0, Data[0])
Branch to Specializer[TN] InstSpec(BA+offset 1, Data[1])
Update old Param InstSpec(BA+offset 2, Data[2])

end if InstSpec(BA+offset 3, Data[3])
Branch to Template[TN]

else
Branch to Standard code

End Function }

Fig. 4. Wrapper code (left) and invocation of Instruction Specializer(right)

6 Experimental Results

The specialization approach has been applied to hot functions in SPEC CPU2000
benchmarks with reference inputs. The experiments have been performed over
platforms with the configurations given in Table 2. This section describes the
results of these benchmarks together with optimizations performed by compilers
due to specialization.

Figure 5 shows the speedup percentage obtained w.r.t standard (original)
code. For these benchmarks, the speedup largely depends upon the use of pa-
rameters in the code. The hot code of these benchmarks does not always include

Table 2. Configuration of the Architectures Used

Processor Speed Compilers & optimization level

Intel Itanium-II (IA64) 1.5 GHz gcc v 4.3, icc v 9.1 with -O3
Intel Pentium-4 (R) 3.20 GHz gcc v 4.3 , icc v 8.0 with -O3

316 M.A. Khan, H.-P. Charles, and D. Barthou

(a) Speedup percentage with icc compiler

(b) Speedup percentage with gcc compiler

Fig. 5. Performance Results of SPEC CPU2000 Benchmarks

integer parameters, and in some cases, the candidate parameters were unable to
impact overall execution to a large factor.

For benchmark mesa, the compilers were able to perform inlining and partial
evaluation. However, these optimizations did not put any significant impact on
execution time. In art benchmark, the main optimizations were data prefetch-
ing and unrolling which resulted in good performance on IA-64 architecture.
However, the compilers did not make any big difference w.r.t standard code on
Pentium-IV architecture.

For equake, the large values of specializing parameters resulted in code almost
similar to that of un-specialized version with small difference in code scheduling.
Similarly, the gzip benchmark benefits from loop optimizations and code inlining
on Pentium-IV, however on Itanium-II, the compilers generated code with similar
unroll factor for both the standard and specialized versions.

In the ammp, vpr, mcf, parser and gap benchmarks, a large part of hot func-
tions does not make use of integer parameters and the large frequency of variance
in runtime values reduces the performance gain after hybrid specialization.

In case of the bzip2 benchmark, the gcc compiler performed partial evalua-
tion and the loop-based optimizations which did not exist in un-specialized code.
With the icc compiler, the loop-based optimizations were similar in both the spe-
cialized and un-specialized code with small difference due to partial evaluation.

The twolf benchmark benefits mainly from data cache prefetching, reduced
number of loads and better code scheduling on IA-64 with icc compiler, whereas

An Effective Automated Approach to Specialization of Code 317

Table 3. Summarized analysis for SPEC benchmarks

BenchmarkNumber
of static
versions
reqd.

Percentage of
re-instantiations

Number of
Templates

Percentage of code
size increase (w.r.t.
un-specialized
benchmark)

IA-64 P-IV IA-64 P-IV IA-64 P-IV

icc gcc icc gcc icc gcc icc gcc icc gcc icc gcc

177.mesa 9 8% 8% 36% 8 % 9 9 2 9 10% 1% 1% 1%

179.art 5 1% 1% 1% 1% 4 5 5 4 9% 8% 9% 1 %

183.equake 1 0% 0% 0% 0% 1 1 1 1 8% 7% 1% 7%

188.ammp 1 0% 0% 0% 0% 1 1 1 1 1% 2% 1% 3%

164.gzip 15 43% 86% 43% 86% 2 1 2 1 1% 2% 1% 3%

175.vpr 8444 1% 1% 1% 1% 3 3 11 4 1% 1% 1% 1%

181.mcf 10 1% 1% 1% 1% 3 1 3 1 19 % 38 % 19% 1%

197.parser 40 21% 42% 21% 42% 2 1 2 1 4% 1% 4% 1%

254.gap 53 8% 16% 8% 63% 8 4 8 1 34% 10% 1% 5%

256.bzip2 5 21% 42% 21% 21% 2 1 2 2 2% 1% 1% 5 %

300.twolf 2 49% 49% 49% 49% 1 1 1 1 1% 1% 1% 1%

(a) icc compiler

(b) gcc compiler

Fig. 6. Speedup to Size Increase Ratio(SSIR) for SPEC Benchmarks. SSIR=1 means
that the speedup obtained is equal to the code size expansion.

for the remaining platform configurations, the compilers were limited to per-
forming inlining and partial evaluation.

Table 3 shows (in column 1) the number of versions that were required for
static specialization together with percentage of re-instantiations of the same

318 M.A. Khan, H.-P. Charles, and D. Barthou

(a) icc compiler

(b) gcc compiler

Fig. 7. Slot to Template Size Percentage (STSP) for SPEC Benchmarks

template (in column 2). The large percentage of re-instantiations for the gzip,
parser and twolf benchmarks represents repeated pattern of values. This factor
can only be minimized through software cache of templates which is part of
future work.

Columns 3 and 4 show respectively the number of templates and the percent-
age of code size increase w.r.t. un-specialized code. The compilers show variant
behaviour in terms of code size after code specialization mainly due to different
optimizations. This is why, sometimes code with a large number of specialized
versions/templates may result in less size than with a small number of specialized
versions.

The speedup to size increase ratio (SSIR) computed as Speedup
(Size of code after specialization

Size of unspecialized code)
for SPEC benchmarks has been given in Figure 6. The SSIR metric is a measure of
efficiency for our specialization approach (similar to the one used for parallelism).
The SSIR is not large over both the processors even with benchmarks having
large speedup, e.g., art. This is due to the fact that for benchmarks with the
large speedup, standard (un-specialized) code size of entire application is small,
and addition of hybrid code with specialized versions, template and specializer
code thereby reduces the SSIR factor.

The Figure 7 shows the largest slot to template size percentage (STSP) for each
benchmark. It is calculated as:

(
No. of slots reqd. for dynamic specialization

Total no. of instructions in template

)
∗ 100 .

For benchmarks mesa, equake, ammp, where the number of static versions required
is equal to the number of templates, it becomes zero. However, it is less than 6%

An Effective Automated Approach to Specialization of Code 319

(a) icc compiler

(b) gcc compiler

Fig. 8. Code Size Reduction Percentage(CSRP) for SPEC Benchmarks w.r.t equivalent
static specialization. 50% would mean that the number of templates is half the number
of static versions required to cover the same specialized values.

for all benchmarks which shows that our specialization method incurs the small-
est possible overhead at runtime.

The effectiveness of hybrid specialization also lies in code size reduction w.r.t
static specialized code for the same input intervals. In this regard, the metric
Code Size Reduction Percentage calculated as,(
1 − Number of Templates found

Number of Static Versions Required

)
∗ 100 , has been given in Figure 8. For the

benchmarks mesa, art, equake and ammp, the CSRP is very small since the
number of templates is very close to the number of versions required for static
specialization. For other benchmarks, this factor becomes large since a single
template is used to serve a very large number of values.

7 Specialization Overhead

A summarized view of overhead with respect to application execution time is
shown in Figure 9. The reduced overhead results in good performance for SPEC
benchmarks. It is due to the fact that the templates and the values to be inserted
at runtime are entirely generated at static compile time. The modification of a
single instruction takes an average2 of 9 cycles on Itanium-II and 2 cycles on
Pentium-IV. This overhead of generation of instructions is far less than that in
existing dynamic compilation/specialization systems e.g. Tempo [6] or Tick C [1],
2 The binary instruction formats require extraction of different numbers of bit-sets.

320 M.A. Khan, H.-P. Charles, and D. Barthou

(a) icc compiler

(b) gcc compiler

Fig. 9. Overhead of Specialization w.r.t Execution Time

where it takes 100 cycles with the VCODE interface (with no optimizations) and
300 to 800 cycles using the ICODE interface (with optimizations) to generate a
single instruction.

Moreover, the time taken to generate templates at static compilation depends
upon the size of intervals. For benchmark with the largest interval size, i.e.
vpr, it takes 5 hours for gcc on IA-64, otherwise it takes 3 hours for all other
configurations.

8 Related Work

The C-Mix [10] partial evaluator works only at static compile time. It analyzes
the code and makes use of specialized constructs to perform partial evaluation.
Although it does not require runtime activities, it is limited to optimizing code
for which the values already exist. The scope therefore becomes limited since
a large part of application execution is based on values only available during
execution.

The Tempo [6] specializer can perform specialization at both static compile
time and runtime. At static compile time, Tempo performs partial evaluation
that is only applicable when the values are static (i.e. already known). In con-
trast, hybrid specialization makes the unknown values available and uses a tem-
plate that is already specialized at static compile time. Therefore, the template
is more optimized in our case than the one generated through the Tempo spe-
cializer. Similarly, another template-based approach of specialization has been

An Effective Automated Approach to Specialization of Code 321

given in [4,5]. They suggest the use of affine functions to perform runtime code
specialization. The scope of templates therefore becomes very limited since the
number of constraints for generating templates is very large. Moreover, the run-
time computations required for specialization of templates reduce the impact of
optimizations.

The Tick C(‘C)[1] compiler makes use of the lcc retargetable intermediate
representation to generate dynamic code. It provides ICODE and VCODE in-
terfaces to select the trade-off between performance and runtime optimization
overhead. A large speedup is obtained after optimizations during execution of
code. However, its code generation activity incurs overhead that requires more
than 100 calls to amortize. In case of the hybrid specialization approach, we
minimize the runtime overhead through generation of optimized templates and
specialized data at static compile time. Similarly, most of the dynamic code gen-
eration and optimization systems like Tick C [1], DCG [11] or others suggested in
[2,12,7] are different in that these can not be used to produce generic templates
thus requiring large number of dynamic template versions for each different spe-
cializing value. The runtime activities other than optimizations, such as code
buffer allocation and copy, incur a large amount of overhead thereby making
them suitable for code to be called multiple times.

In runtime optimization systems, Dynamo [13] and ADORE [14] perform op-
timizations and achieve good speedup, but these systems do not provide the
solution to control code size increase caused by dynamic versions.

9 Conclusion and Future Work

This article presents a hybrid specialization approach which makes use of static
specialization to generate templates that can be specialized at runtime to adapt
them to different runtime values. For many complex SPEC benchmarks, we are able
to achieve good speedup with minimum increase in code size. Most of the heavy-
weight activities are performed at static compile time including the optimizations
performed by compilers. The code is specialized statically and object code is ana-
lyzed to search for templates followed by generation of a runtime specializer. The
specializer can perform runtime activities at the minimum possible cost.

A generalization mechanism makes the template valid for a large number of
values. This new concept of template serves two purposes: to control the code
size with minimum runtime activities and benefit from optimizations through
specialization performed at static compile time.

The current implementation framework of hybrid specialization is being em-
bedded into XLanguage [15] compiler with additional support of software cache
containing more clones of same templates.

References

1. Poletto, M., Hsieh, W.C., Engler, D.R., Kaashoek, F.M.: ’C and tcc: A language
and compiler for dynamic code generation. ACM Transactions on Programming
Languages and Systems 21, 324–369 (1999)

322 M.A. Khan, H.-P. Charles, and D. Barthou

2. Grant, B., Mock, M., Philipose, M., Chambers, C., Eggers, S.J.: DyC: An expres-
sive annotation-directed dynamic compiler for C. Technical report, Department of
Computer Science and Engineering, University of Washington (1999)

3. Leone, M., Lee, P.: Optimizing ml with run-time code generation. Technical report,
School of Computer Science, Carnegie Mellon University (1995)

4. Khan, M.A., Charles, H.P.: Applying code specialization to FFT libraries for inte-
gral parameters. In: 19th Intl. Workshop on Languages and Compilers for Parallel
Computing, New Orleans, Louisiana, November 2-4 (2006)

5. Khan, M.A., Charles, H.P., Barthou, D.: Reducing code size explosion through
low-overhead specialization. In: Proceeding of the 11th Annual Workshop on the
Interaction between Compilers and Computer Architecture, Phoenix (2007)

6. Consel, C., Hornof, L., Marlet, R., Muller, G., Thibault, S., Volanschi, E.N.: Tempo:
Specializing Systems Applications and Beyond. ACM Computing Surveys 30(3es)
(1998)

7. Consel, C., Hornof, L., Noël, F., Noyé, J., Volanschi, N.: A uniform approach for
compile-time and run-time specialization. In: Danvy, O., Thiemann, P., Glück, R.
(eds.) Partial Evaluation, Dagstuhl Seminar 1996. LNCS, vol. 1110, pp. 54–72.
Springer, Heidelberg (1996)

8. SPEC: SPEC Benhmarks: SPEC (2000), http://www.spec.org/cpu2000/
9. Calder, B., Feller, P., Eustace, A.: Value profiling. In: International Symposium on

Microarchitecture, pp. 259–269 (1997)
10. Makholm, H.: Specializing C— An introduction to the principles behind C-Mix.

Technical report, Computer Science Department, University of Copenhagen (1999)
11. Engler, D.R., Proebsting, T.A.: DCG: An efficient, retargetable dynamic code gen-

eration system. In: Proceedings of Sixth International Conf. on Architectural Sup-
port for Programming Languages and Operating Systems, California (1994)

12. Leone, M., Lee, P.: Dynamic Specialization in the Fabius System. ACM Computing
Surveys 30(3es) (1998)

13. Bala, V., Duesterwald, E., Banerjia, S.: Dynamo: a transparent dynamic optimiza-
tion system. ACM SIGPLAN Notices 35(5), 1–12 (2000)

14. Lu, J., Chen, H., Yew, P.C., Hsu, W.C.: Design and Implementation of a
Lightweight Dynamic Optimization System. Journal of Instruction-Level Paral-
lelism 6 (2004)

15. Donadio, S., Brodman, J., Roeder, T., Yotov, K., Barthou, D., Cohen, A.,
Garzaran, M., Padua, D., Pingali, K.: A language for the comParallel Architec-
tures and Compilation Techniques representation of multiple program versions. In:
Ayguadé, E., Baumgartner, G., Ramanujam, J., Sadayappan, P. (eds.) LCPC 2005.
LNCS, vol. 4339. Springer, Heidelberg (2006)

http://www.spec.org/cpu2000/

Flow-Sensitive Loop-Variant Variable

Classification in Linear Time

Yixin Shou1, Robert van Engelen1,�, and Johnnie Birch2

1 Florida State University, Tallahassee FL 32306
{shou,engelen}@cs.fsu.edu

2 University of Texas at San Antonio, San Antonio TX 78249
birch@cs.utsa.edu

Abstract. This paper presents an efficient algorithm for classifying gen-
eralized induction variables and more complicated flow-sensitive loop-
variant variables that have arbitrary conditional update patterns along
multiple paths in a loop nest. Variables are recognized and translated
into closed-form functions, such as linear, polynomial, geometric, wrap-
around, periodic, and mixer functions. The remaining flow-sensitive vari-
ables (those that have no closed forms) are bounded by tight bounding
functions on their value sequences by bounds derived from our exten-
sions of the Chains of Recurrences (CR#) algebra. The classification
algorithm has a linear worst-case execution time in the size of the SSA
region of a loop nest. Classification coverage and performance results for
the SPEC2000 benchmarks are given and compared to other methods.

1 Introduction and Related Work

Induction variables (IVs) [1,9,11,12,13,23] are an important class of loop-variant
variables whose value progressions form linear, polynomial, or geometric se-
quences. IV recognition plays a critical role in optimizing compilers as a prereq-
uisite to loop analysis and transformation. For example, a loop-level optimizing
compiler applies array dependence testing [23] in loop optimization, which re-
quires an accurate analysis of memory access patterns of IV-indexed arrays and
arrays accessed with pointer arithmetic [8,21]. Other example applications are
array bounds check elimination [10], loop-level cache reuse analysis [3], software
prefetching [2], loop blocking, variable privatization, IV elimination [1,9,11,22],
and auto-parallelization and vectorization [23].

The relative occurrence frequency in modern codes of flow-sensitive loop-
variant variables that exhibit more complicated update patterns compared to
IVs is significant. The authors found that 9.32% of the total number of vari-
ables that occur in loops in CINT2000 are conditionally updated and 2.82% of
the total number of variables in loops in CFP2000 are conditionally updated.
By contrast to IVs, these variables have no known closed-form function equiv-
alent. As a consequence, current IV recognition methods fail to classify them.

� Supported in part by NSF grant CCF-0702435.

V. Adve, M.J. Garzarán, and P. Petersen (Eds.): LCPC 2007, LNCS 5234, pp. 323–337, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

324 Y. Shou, R. van Engelen, and J. Birch

The result is a pessimistic compiler analysis outcome and lower performance
expectations.

Closer inspection of these benchmarks reveals that value progressions of all of
these flow-sensitive variables can be bounded with tight bounding functions over
the iteration space. Typically a pair of linear lower- and upper-bound functions on
variables that have conditional increments suffices. Bounding the value progres-
sions of these variables has the advantage of increased analysis coverage. Bound-
ing also significantly alleviates loop analysis accuracy problems in the presence
of unknowns. Most compilers will simply give up on loop analysis and optimiza-
tion when a single variable with a recurrence in a loop has an unknown value pro-
gression. With the availability of tight functional (iteration-specific) bounds on
variables, analysis and optimization can continue. For example, in [6,20] it was
shown that dependence analysis can be easily extended to handle such functional
bounds. We believe this approach can also strengthen methods for array bounds
check elimination, loop-level cache reuse analysis, software prefetching, and loop
restructuring optimizations that require dependence analysis.

Automatic classification of flow-sensitive variables poses two challenges: 1) to
find accurate bounds on the value progressions of variables that are condition-
ally updated, conditionally reinitialized, and, more generally, exhibit multiple
coupled assignments in the branches of a loop body. And 2) to find a polynomial
time algorithm with sufficient accuracy to classify and bound these variables.

A search method that uses full path enumeration to collect coupled variable
update operations in a loop body may require an exponential number of steps to
complete in the worst case. Furthermore, the use of bounds should be restricted
to the necessary cases only. This means that the “traditional” form of IVs in
loops should still be classified as linear, polynomial, and geometric. Thus, speed
of a classification algorithm can only be traded in for accuracy of classifying
flow-sensitive variables that have (multiple) conditional updates in loops.

While the recognition of “traditional” forms of IVs is extensively described
in the literature, there is a limited body of work on methods to analyze more
complicated flow-sensitive loop-variant variables that have arbitrary conditional
update patterns along multiple paths in a loop nest. We compared this related
work to our approach. To compare the capabilities of all of these approaches,
Figure 1 shows four example loop structures1 with a classification of their fun-
damentally different characteristics.

The method by Gerlek, Stoltz and Wolfe [9] classifies IVs by detecting Strongly
Connected Components (SCCs) in a FUD/SSA graph using a variant of Tarjan’s
algorithm [16]. Each SCC represents an IV or a loop-variant variable. A collection
of interconnected SCCs represent a set of interdependent IVs. The IV classifica-
tion proceeds by matching the update statement patterns for linear, geometric,
periodic, and polynomial IVs and by constructing the closed-form characteristic
function of each IV using a sequence-specific recurrence solver. Induction vari-
able substitution (IVS) is then applied to replace induction expressions with
equivalent closed-form functions. The method suggests a sequence strengthening

1 All examples in this text will be given in Single Static Assignment (SSA) form.

Flow-Sensitive Loop-Variant Variable Classification in Linear Time 325

+

j
1

j
2

j
4

j
3

+

22

0

j
1

+

2

0

j
2

2

j
3

j
4

i
1

i
2

+

1

1

*
+

j
1

j
2

j
4

j
3

+

32

0

j
1

+

2

0

j
2

0

j
3

j
4

loop
j1 = φ(0, j4)

if (. . .)
j2 = j1 + 2

else
j3 = j1 + 2

j4 = φ(j2, j3)
endloop

loop
i1 = φ(1, i2)
j1 = φ(0, j4)

if (. . .)
j2 = i1 ∗ 2

else
j3 = j1 + 2

j4 = φ(j2, j3)
i2 = i1 + 1

endloop

loop
j1 = φ(0, j4)

if (. . .)
j2 = j1 + 2

else
j3 = j1 + 3

j4 = φ(j2, j3)
endloop

loop
j1 = φ(0, j4)

if (. . .)
j2 = 0

else
j3 = j1 + 2

j4 = φ(j2, j3)
endloop

Closed-form
solution: Closed-form solution: Bounds: Bounds:

j1(I) = 2∗I j1(I) = 2∗I 2∗I ≤ j1(I) ≤ 3∗I 0 ≤ j1(I) ≤ 2∗I

(a) Syntactically (b) Semantically (c) Discordant (d) Conditional
equivalent equivalent updates re-initialization
updates updates

Fig. 1. Loops with Flow-Sensitive Loop-Variant Variable Updates

method to handle restricted forms of conditionally-updated variables. However,
the variables in Figure 1(a) and (c) would be loosely classified as a monotonic
variables, without identifying its linear sequence or bounds.

Loops with syntactic and semantically equivalent updates Figure 1(a,b) require
aggressive symbolic analysis and expression manipulation to prove equivalence
of updates in branches. Haghighat and Polychronopoulos [11] present a sym-
bolic differencing technique to capture induction variable sequences by applying
abstract interpretation. Symbolic differencing with abstract interpretation is ex-
pensive. They do not handle the classes of loops shown in Figure 1(c,d).

Wu et al. [24] introduce a loop-variant variable analysis technique that con-
structs a lattice of monotonic evolutions of variables, which includes variables
with discordant updates Figure 1(c). However, her approach only determines the
direction in which a variable changes and other information such as strides are
lost. Closed-form functions of IV progressions are not computed.

Recent work by several authors [5,15,17,18] incorporates the Chains of Re-
currences (CR) algebra [25] for IV recognition and manipulation. The use of
CR forms eliminates the need for a-priori classification, pattern matching, and
recurrence solvers. All of these approaches use a variation of an algorithm origi-
nally proposed by Van Engelen [18] to construct CR forms for IVs. The primary
advantage of these methods is the manipulation of CR-based recurrence forms
rather than closed-form functions, which gives greater coverage by including the
recognition and manipulation of IVs that have no closed forms.

326 Y. Shou, R. van Engelen, and J. Birch

j
1

+

1i
1

i
2

+

1

0

a[]

99 loop
i1 = φ(0, i2)
j1 = φ(99, i1)

a[j1 + 1] = . . .
. . .
i2 = i1 + 1

endloop

i1 = {0, 1, 2, 3, 4, . . .}
j1 = {99, 0, 1, 2, 3, . . .}

Fig. 2. SCC of the SSA Form of an Example Loop with a Wrap-around Variable

An extensive loop-variant variable recognition approach based on CR forms
is presented in [20]. The approach captures value progressions of all types of
conditionally-updated loop-variant variables Figure 1(a-d). The method uses full
path enumeration on Abstract Syntax Tree (AST) forms. The algorithm has an
exponential worst-case execution time as a consequence of full path enumeration.

The class of re-initialized variables Figure 1(d) and wrap-around variables
shown in Figure 2 are special cases of “out-of-sequence” variables, which take a
known sequence but have exceptional (re)start values. Even though the relative
percentage of these types of variables in benchmarks is low (0.55% in CINT2000
and to 0.62% in CFP2000), their classification is important to enable loop re-
structuring [11]. A wrap-around variable is flow-sensitive: it is assigned a value
outside the loop for the first iteration and then takes the value sequence of an-
other IV for the remainder of the iterations. These variables may cascade: any IV
that depends on the value of a wrap-around variable is a wrap-around variable
of one order higher [9] (two iterations with out-of-sequence values).

This paper presents a linear-time flow-sensitive loop-variant variable analysis
algorithm based on the method by Gerlek et al. [9] and the CR# (CR-sharp)
algebra [19]. This approach enables the analysis of coupled loop-variant variables
in multiple SCCs Figure 1(a-b) (both formed by conditional and unconditional
flow) and is essential to construct lower- and upper-bounding functions for flow-
sensitive variables Figure 1(c-d).

The contributions of this paper can be summarized as follows:

– A systematic classification approach based on new CR# algebra extensions
to analyze a large class of loop-variant variables “in one sweep” without the
need for a-priori classification and recurrence solvers.

– A new algorithm for classification of flow-sensitive variables that are updated
in multiple branches of the loop body, with a running time that scales linearly
with the size of the SSA region of a loop nest.

– An implementation in GCC 4.1 of the classifier.

The remainder of this paper is organized as follows. Section 2 gives CR#
algebra preliminaries. Section 3 presents the linear time, flow-sensitive IV classi-
fication algorithm based on the CR# algebra. In Section 4 results are presented
using an implementation in GCC 4.1. Performance results on SPEC2000 show
increased classification coverage with a very low running time overhead. Section 5
summarizes the conclusions.

Flow-Sensitive Loop-Variant Variable Classification in Linear Time 327

2 Preliminaries

The CR notation and algebra was introduced by Zima [25] and later extended
by Bachmann [4] and Van Engelen [18]. A basic recurrence Φi is of the form:

Φi = {ϕ0, �1, f1}i

which represents a sequence of values starting with an initial value ϕ0 updated
in the next iteration by operator �1 (either + or ∗) and stride value f1. When
f1 is a non-constant function in CR form this gives a chain of recurrences:

Φi = {ϕ0, �1, {ϕ1, �2, {ϕ2, · · · , �k, {ϕk}i}i}i}i

which is usually written in flattened form

Φi = {ϕ0, �1, ϕ1, �2, · · · , �k, ϕk}i

The value sequences of three example CR forms is illustrated below:

iteration i = 0 1 2 3 4 5 . . .

{2, +, 1}i value sequence = 2 3 4 5 6 7 . . .
{1, ∗, 2}i value sequence = 1 2 4 8 16 32 . . .

{1, ∗, 2, +, 1}i value sequence = 1 2 6 24 120 720 . . .

Multi-variate CRs (MCR) are CRs with coefficients that are CRs in a higher
dimension [4]. Multi-dimensional loops are used to evaluate MCRs over grids.

The power of CR forms is exploited with the CR algebra: its simplification
rules produce CRs for multivariate functions and functions in CR form can be
easily combined. Below is a selection of CR algebra rules2:

c ∗ {ϕ0, +, f1}i ⇒ {c∗ϕ0, +, c∗f1}i

{ϕ0, +, f1}i ± c ⇒ {ϕ0 ± c, +, f1}i

{ϕ0, +, f1}i ± {ψ0, +, g1}i ⇒ {ϕ0 ± ψ0, +, f1 ± g1}i

{ϕ0, +, f1}i ∗ {ψ0, +, g1}i ⇒ {ϕ0∗ψ0, +, {ϕ0, +, f1}i∗g1+{ψ0, +, g1}i∗f1+f1∗g1}i

CR rules are applicable to IV manipulation. For example, suppose i is a loop
counter with CR {0, +, 1}i and j is a linear IV with CR {j0, +, 2}i which has a
symbolic unknown initial value j0. Then expression i2 + j is simplified to

{0, +, 1}i ∗ {0, +, 1}i + {j0, +, 2}i ⇒ {0, +, 1, +, 2} + {j0, +, 2}i ⇒ {j0, +, 3, +, 2}i

The closed form function f of this CR is f(I) = j0 + I ∗ (I + 2), which is derived
by the application of the CR inverse rules defined in [17]. A lattice of CR forms
for simplification and methods for IV analysis is introduced in [19].

The CR# (CR-sharp) algebra is an extension of the CR algebra with new op-
erators, algebra rules, and CR form alignment operations to derive CR bounding
functions. The #-operator of the CR# algebra has the following semantics.

Definition 1. The delay operator # is a right-selection operation defined by

(x#y) = y for any x and y.

2 See [17] for the complete list of CR algebra simplification rules.

328 Y. Shou, R. van Engelen, and J. Birch

CRs with #-operators will be referred to as delayed CRs. The #-operator allows
several initial values to take effect before the rest of the sequence kicks in:

iteration i = 0 1 2 3 4 5 . . .

{9, #, 1, +, 2}i value sequence = 9 1 3 5 7 9 . . .
{1, ∗, 1, #, 2}i value sequence = 1 1 2 4 8 16 . . .

Delayed CRs are an essential instrument to analyze “out-of-sequence” variables.
To analyze conditionally updated variables in a loop, new rules for CR#

alignment and CR# bounds construction are introduced. Two or more CR forms
of different lengths or with different operations can be aligned for comparison.

Definition 2. Two CR forms Φi and Ψi over the same index variable i are
aligned if they have the same length k and the operators �j, j = 1, . . . , k, form
a pairwise match.

For example, {1, +, 1, ∗, 1} is aligned with {0, +, 2, ∗, 2}i, but {1, +, 2}i is not
aligned with {1, ∗, 2}i and {1, +, 2}i is not aligned with {1, +, 2, +, 1}i.

A set of Lemmas that provide concept and proof of a simple algorithm for
alignment of CR forms can be found in a technical report [14]. After alignment,
the minimum and the maximum bounding CRs of two arbitrary CR forms is
inductively defined, see also [14].

Consider two example CR forms, Φi = {1, #, 1, +, 2}i represents a wrap-
around variable and Ψi = {1, ∗, 2}i is geometric. First, Φi and Ψi are aligned:

Φi = {1, #, 1, +, 2}i = {1, #, 1, +, 2, ∗, 1}i

Ψi = {1, ∗, 2}i = {1, #, 2, ∗, 2}i = {1, #, 2, +, 2, ∗, 2}i

Then both sequences are bounded by the min and max sequences:

min({1, #, 1, +, 2, ∗, 1}i, {1, #, 2, +, 2, ∗, 2}i)={1, #, 1, +, 2, ∗, 1}i

max({1, #, 1, +, 2, ∗, 1}i, {1, #, 2, +, 2, ∗, 2}i)={1, #, 2, +, 2, ∗, 2}i

3 Flow-Sensitive Loop-Variant Variable Classification

This section presents an algorithm to classify flow-sensitive loop-variant
variables in linear time based on CR forms. The algorithm has three
parts: Collect-Recurrences, CR-Construction and CR-Alignment-

and-Bounds. These routines are described first, followed by an analysis of
complexity and accuracy.

3.1 Algorithms

1. Collect Recurrence Relations. The first phase of the algorithm is per-
formed by Collect-Recurrences shown in Figure 3. The routine computes
the set of recurrence relations for a variable v defined in an assignment S and
this is repeated for each variable of a loop header φ-node. The algorithm visits
each node in each SCCs to compute sets of recurrence relations of loop-variant

Flow-Sensitive Loop-Variant Variable Classification in Linear Time 329

Algorithm Collect-Recurrences(v, S)
- input: program in SSA form, SSA variable v, and assignment S of the form var = expr
- output: recurrence sequence pair or recurrence sequence list
if expr is of the form x then rec := Check(v,x), store (var, rec) and Return rec
else if expr is of the form of x � y then

rec := Check(v,x) � Check(v,y), store (var, rec) and Return rec
else if expr is a loop header node φ(x,y) (x is defined outside the current loop and

y is defined inside the current loop) then
I := Check(var,x) and Seq := Check(var,y)
Construct Pair p := 〈var, (I, Seq)〉
Return p

else if expr is a conditional node φ(b1, · · · , bn) then
Check each branch of conditional φ node:
B1 := Check(v, b1), · · ·,Bn := Check(v, bn)
Construct sequence list Seq := (B1, · · · , Bn), Compute bound on the Seq
if the length of the Seq list > Nthresh then Return ⊥
Store (var, Seq) and Return Seq

else Return ⊥
endif

Algorithm Check(v, x)
- input: loop header φ-node variable v and operand x
- output: recurrence sequence expression list
if x is loop invariant or constant then Return x
else if x is an SSA variable then

if x is v then Return x
else if x has a CR form or recurrence Φ stored then

if Φ’s index variable loop level is deeper than current loop level then
Apply the CR#−1 rules to convert Φ to closed form f(I)
Replace I’s in f(I) with trip counts of index variables of the loop
Return f

else Return Φ
endif

else if the loop depth where x located is lower than the loop depth where v located then
Return x

else
Return Collect-Recurrences(v, the statement S that defines x)

endif
endif

Fig. 3. Collecting the Recurrence Relations from the SCCs of an SSA Loop Region

variables. The sets are cached at the nodes for retrieval when revisited via a
cycle, which ensures that nodes and edges are visited only once.

The process is illustrated with an example code in SSA form and correspond-
ing SCC shown in Figures 4(a) and (b). The loop exhibits conditional updates
of variable j. Starting from the loop header φ-node j1, the algorithm follows the
SSA edges recursively to collect the recurrence relations for each SSA variable
in the SCC. The φ function for j1 merges the initial value 0 outside the loop and
the update j7 inside the loop. Since conditional φ-node j7 merges two arguments
j5 and j6, to collect the recurrence sequence for j7, the recurrence sequences for
j5 and j6 must be collected first, which means j7 depends on j5 and j6. Thus, j5
was checked first for j7 and j4 was reached by following the SSA edges from j5.
The search continues until the starting loop header φ-node j1 is reached. The
symbol j1 was returned and the recursive calling stops. Therefore, the recurrence
sequence for j2 can be obtained based on j1, which is j1 + 1. Similarly, based
on this dependence chain, the recurrences propagated for each SSA variable are
shown in Figure 4(c).

330 Y. Shou, R. van Engelen, and J. Birch

loop
j1 = φ(0, j7)
if (. . .)

j2 = j1 + 1
else

j3 = j1 + 2
j4 = φ(j2, j3)
if (. . .)

j5 = j4 + 3
else

j6 = j4 + 4
j7 = φ(j5, j6)
. . .

endloop

j
1

j
2

+

1

0

2

+

j
3

j
4

j
5

+ +

j
6

j
7

3 4

var stored recurrence
j2 = j1 + 1
j3 = j1 + 2
j4 = φ(j2, j3)

⇒ [j1 + 1, j1 + 2]
j5 = j4 + 3

⇒ [j1 + 4, j1 + 5]
j6 = j4 + 4

⇒ [j1 + 5, j1 + 6]
j7 = φ(j5, j6)

⇒ [j1 + 4, j1 + 5, j1 + 6]
⇒ [j1 + 4, j1 + 6]

j1 = φ(0, j7)
⇒ φ(0, [j1 + 4, j1 + 6])
⇒ {0, +, 4}, {0, +, 6}

(a) SSA form (b) SCC from SSA (c) CR form derivation

Fig. 4. Analysis of SSA φ-Node Join Points

Note that due to control flow variable j4 has two recurrences. Consequently,
all variables that depend on j4 have at least two recurrences. However, as the
recurrences are propagated they degenerate into lower and upper sequences to
limit the algorithmic complexity. Finally, the recurrence pair for loop header
φ-node j1 is constructed with initial value 0 and bounding recurrence sequences
j1 + 4 and j1 + 6.

To compute the recurrences for variables in a multi-dimensional loop, the
algorithm starts with the analysis of the inner loop. More details with examples
of multiple-dimensional loops can be found in a technical report [14].

2. Constructing CR Forms for Recurrences Relations. Algorithm CR-

Construction(p) shown in Figure 5 converts recurrence relations of a variable
into CR form (the last step of the example shown in Figure 4(c)), where p denotes
a recurrences sequence pair with initial value v0 of variable v and recurrence
sequence S. If variable v does not appear in recurrence sequence S, then v is a
conditionally reinitialized variable or wrap around variable of any order.

To illustrate this process, consider a classic form of a wrap-around variable
shown in Figure 2. The CR forms are derived as follows, where j1 is a first-order
wrap-around variable:

i1 : 〈i1, (0, i1 + 1)〉 ⇒ {0, +, 1}
j1 : 〈j1, (99, i1)〉 ⇒ {99, #, 0, +, 1}

j1 + 1 = {99, #, 0, +, 1} + 1 = {100, #, 1, +, 1}

Now CR-Construction takes the pair 〈i1, (0, i1 + 1)〉 for variable i1 as the
input. The CR form for i1 is computed with rule (1) of the algorithm. Similarly,
the CR form for j1 is computed based on rule (5) of the algorithm. The appli-
cation of the CR# algebra enables efficient manipulation and simplification of
expressions with wrap-around variables, such as the analysis of array subscript
j1 + 1 in Figure 2.

Flow-Sensitive Loop-Variant Variable Classification in Linear Time 331

Algorithm CR-Alignment-and-Bounds(pl)
- input: recurrences sequence list pair pl = 〈v, (I, Seq)〉
- output: CR Bounds solution
if length of the Seq list n > Nthresh then Return ⊥
cr := CR-Construction(〈v, (I, first recurrence in Seq list)〉)
for each remaining recurrence e in Seq

Construct pair p := 〈v, (I, e)〉
cr1 := CR-Construction(p)
Align cr with cr1
if CR alignment succeeds then Compute the bounds of cr and cr1 to cr
else Return ⊥
endif

enddo
Store (v, cr) and Return cr

Algorithm CR-Construction(p)
- input: recurrences sequence pair p = 〈v, (v0, S)〉, where v0 is initial value

of variable v and S is the recurrence sequence for v
- output: CR Solution
(1) if S is of the form v + Ψ (Ψ can be CR or constant) then

Φ := {v0, +, Ψ}loop, where loop is the innermost loop v located
(2) else if S is of the form v ∗ Ψ (Ψ can be CR or constant) then

Φ := {v0, ∗, Ψ}loop

(3) else if S is of the form c ∗ v + Ψ , where c is constant or a singleton CR form and
Ψ is a constant or a polynomial CR form then

Φ := {ϕ0, +, ϕ1, +, · · · , +, ϕk+1, ∗, ϕk+2}loop, where
ϕ0 = v0; ϕj = (c − 1) ∗ ϕj−1 + ψj−1; ϕk+2 = c

(4) else if S is variable v then
Φ := {v0}loop

(5) else
Φ := {v0, #, S}loop

endif

Fig. 5. Constructing CR Forms for Recurrence Relations

3. CR Alignment and Bounds. To handle conditionally updated variables
in a loop nest, we introduce an algorithm for CR alignment and bounds com-
putation. The key idea is that two or more CR forms of different lengths or
with different operations can be aligned to enable pair-wise coefficient compar-
isons to efficiently construct bounding functions on the combined sequences. The
CR-based bounds are important to determine the iteration-specific bounds on
sequences as illustrated in Figures 1(c) and (d).

Algorithm CR-Alignment-and-Bounds shown in Figure 5 aligns multiple
CRs and computes bounding functions, which are two CR forms that represent
lower- and upper-bound sequences.

Consider an example variable j1 which has three different recurrences due to
control flow. The input recurrence list pair for the algorithm CR-Alignment-

and-Bounds is:

pl = 〈j1, (1, j1 + 3 → 2 ∗ j1 + 1 → 2 ∗ j1)〉

Algorithm CR-Construction computes CR forms for each recurrence in
this list. We have three different CR forms:

cr1 = {1, +, 3} = {1, +, 3, ∗, 1}
cr2 = {1, +, 2, ∗, 2} = {1, +, 2, ∗, 2}

cr3 = {1, ∗, 2} = {1, +, 1, ∗, 2}

332 Y. Shou, R. van Engelen, and J. Birch

where cr1, cr2, and cr3 are computed with rules (1), (3) and (2) in CR-

Construction, respectively. CR form cr1 is aligned using Lemma 3 of [14]
and cr3 is aligned using Lemma 1 of [14]. The minimal and maximum bound of
these CR forms is obtained with Definition 3 in [14] as follows:

min({1, +, 3, ∗, 1}, {1, +, 2, ∗, 2}, {1, +, 1, ∗, 2})={1, +, 1, ∗, 1}CR#−1

⇒ I + 1

max({1, +, 3, ∗, 1}, {1, +, 2, ∗, 2}, {1, +, 1, ∗, 2})={1, +, 3, ∗, 2}CR#−1

⇒ 3 ∗ 2I − 2

Therefore, we have the bounds I + 1 ≤ j1 ≤ 3 ∗ 2I − 2 for iteration I = 0, . . . , n.

3.2 Complexity

In the worst case there are 2n cycles in the SCC for n number of φ-node join
points, see Figure 6. Methods based on full path enumeration require 2n traver-
sals from j1 to jn. However, the presented algorithm is linear in the size of the
SSA region of a loop nest as explained as follows.

The algorithms CollectRecurrences and Check perform a recursive
depth-first traversal of the SSA graph to visit each node to collect recurrences.
When the Collect-Recurrences algorithm visits a node in the SSA graph,
the recurrence collected for this SSA variable is stored in a cache for later re-
trieval. Whenever this node is visited again via another data flow path, the
cached recurrence forms are used. Thus, it is guaranteed that the algorithm vis-
its each node and each edge in the SSA graph only once, which has the same
complexity as Tarjan’s algorithm [16].

For example, in Figure 4(c) each SSA node in the SCC cycle has recurrences
stored and updated during the traversal of the SCC. Assume that the algorithm
visits the leftmost successor of φ-nodes first. To get the recurrence for variable
j7, the edges from j5 was followed first to collect the recurrence for node j4 in
depth-first manner. The recurrence stored for j4 guarantee all the successor node
of j4 in the graph and the node j4 itself will not be revisited via edge from j6.

Note that each time a new set of recurrence pairs at a conditional φ-node is
merged this potentially increases the recurrence set by a factor of two. However,
the set is reduced immediately by eliminating duplicate recurrence relations and
eliminating relations that are already bounded by other relations, see e.g. Fig-
ure 4. The size of the set of recurrence relations cannot exceed Nthresh, which is a
predetermined constant threshold. A low threshold speeds up the algorithm but
limits the accuracy. Since the average size of the recurrence list of the benchmark

j
1

j
n... ...…

Fig. 6. An SCC with 2n Cycles Constructed from a Loop with n φ-Nodes

Flow-Sensitive Loop-Variant Variable Classification in Linear Time 333

i = 0
j = n
do

if (. . .)
i = i + 1

else
j = j − 1

s = j − i
. . .
while (s > 0)

Path 1:
i = {0, +, 1}
j = n
s = j - i = {n, +,−1}

Path 2:
j = {n, +,−1}
i = 0
s = j - i = {n, +,−1}

Solution for iteration I:
0 ≤ i ≤ I
n−I ≤ j ≤ n
s = {n, +,−1}

Variable Min CR Max CR
i {0} {0, +, 1}
j {n, +,−1} {n}
s = j-i {n, +,−2} {n}

(a) Loop (b) Full path search results (c) Linear-time results

Fig. 7. Comparison of Full Path Search and Linear Time Algorithms

in CINT2000 ranges from 2.04 to 2.32, we found that Nthresh = 10 is sufficiently
large to handle the SPEC2000 benchmarks accurately.

Because the cost for analyzing an SSA node operation is constant and the cost
of recurrence updates at nodes is bounded by Nthresh, the worst-case complexity
is O(|SSA|), where |SSA| denotes the size of the SSA region.

3.3 Accuracy

The algorithm recognizes IVs with closed forms accurately when IVs are not
conditionally updated, thereby producing classifications that cover linear, poly-
nomial, geometric, periodic, and mixer functions, similar to other nonlinear IV
recognition algorithms [9,11,22]. For conditionally updated loop-variant variables
that have no closed forms the algorithm produces bounds.

By comparison, in certain exceptional cases, the full path analysis algo-
rithm [20] is more accurate in producing bounds than the linear time algorithm
presented in this paper. This phenomenon occurs when variables are coupled or
combined in induction expressions. In that case their original relationship may be
lost, which results in looser bounds than full path analysis. However, the greatest
disadvantage of the full path analysis method is its exponential execution time.

To illustrate the effect of coupling on the accuracy of the algorithms, an
example comparison is shown in Figure 7 for a Quicksort partition loop. The
full path search results are shown in Figure 7(b) and the linear-time results is
in Figure 7(c). Full path analysis computes CR solution for variable i, j, and
s in the example loop separately for two paths of the program. The CR result
{n, +, −1} for variable s = j − i is equal in two paths because on of the updates
i = i + 1 and j = j − 1 is always taken. Instead of the single CR form for s, the
CR solutions of the faster algorithm for variable s are bounded by {n, +, −2}
and {n}, which is less accurate than full path search.

4 Implementation and Experimental Results

The following classes of loop-variant variables are recognized and classified by
the algorithm.

334 Y. Shou, R. van Engelen, and J. Birch

while (k++ < AttrCount) {
CppObjectAddr = (addrtype)((char *)CppObjectAddr + Base01Offset);
DbObjectAddr = (addrtype)((char *)DbObjectAddr + BaseDbOffset);
. . .
Base01Offset += Attr01Size;
BaseDbOffset += AttrDbSize;

}
(a) Polynomial IV from 255.vortex

for (n=1; n<=. . . ; n∗=10) {
. . .

}

j = 1;
for (i=0; i < j;) {

i = j;
j = 2 * j + 1;
largest block = i;

}
(b) Geometric IV from 254.gap (c) Mixed IV from 197.parser

while (. . .) {
iside = iside + 1;
if (iside > 3) {

pindex++;
iside = 0;

}
. . .

}

a = 1; b = 0;
while (o != 0) {

t = b;
b = a - (k/o) * b;
a = t;
. . .

}

offset = 0;
for (ipin=0;. . . ;ipin++) {

. . .
if (ldots) {

times listed[bnum] = 0;
unique pin list[inet][offset] = bnum;
offset++;

}
}

(d) Re-initialized IV (e) Cyclic IV (f) Conditionally updated
from 175.vpr from 254.gap IV from 175.vpr

Fig. 8. Example Loops from the SPEC2000 Benchmarks

Linear induction variables are represented by nested CR forms {a, +, s}i, where
a is the integer-valued initial value and s is the integer-valued stride in the
direction of i. The coefficient a can be a nested CR form in another loop
dimension. Linear IVs are the most common IV category.

Polynomial induction variables are represented by nested CR forms of length
k, where k is the order of the polynomial. All � operations in the CR
form are additions, i.e. � = +. For example, the variable CppObjectAddr
and DbObjectAddr in Figure 8(a) are pointer IV with polynomial CR form
{DbObjectAddr, +, 0, +, AttrDbSize} and {CppObjectAddr, +, 0, +, Attr01Size}.

Geometric induction variables are represented by the CR form {a, ∗, r}i, where
a and r are loop invariant. For example, the variable n in Figure 8(b) are
Geometric induction variable with CR form {1, ∗, 10}.

Mix induction variables with CR forms that contain both � = + and ∗. For
example, the variable i and j in Figure 8(c) have CR form {0, +, 1, ∗, 2} and
{1, +, 2, ∗, 2} respectively.

Out-of-sequence (OSV) variables are re-initialized variables and wrap-around
variables. They are represented by (a set of) CR forms {a, #, s}i, where a is
the initial out-of-sequence value and s is a nested CR form. In Figure 8(d),
variable iside in the loop of 175.vpr benchmark is bounded by the CR-form
range [{−1, #, +, 0}, {−1, #, +, 1}] (iside is a re-initialized variable).

Cyclic induction variables who have cyclic dependence between the recurrence
relations of variables. For example, in Figure 8(e) variables a and b from

Flow-Sensitive Loop-Variant Variable Classification in Linear Time 335

Table 1. Loop-variant Variable Classification in SPEC2000

Benchmark Linear Polyn’l Geom. OSV Cyclic Cond’l Mix Unknown
CINT2000
164.gzip 59.45% 0.00% 0.00% 0.79% 0.00% 7.48% 0.00% 32.29%
175.vpr 59.47% 0.00% 0.21% 0.21% 0.00% 9.05% 0.00% 31.07%
181.mcf 38.18% 0.00% 0.00% 0.00% 0.00% 10.91% 0.00% 50.91%
186.crafty 47.91% 0.00% 0.00% 0.00% 0.00% 12.71% 0.00% 39.37%
197.parser 35.19% 0.00% 0.00% 0.51% 0.00% 5.22% 0.51% 58.58%
254.gap 62.73% 0.00% 2.52% 1.00% 0.33% 5.85% 0.38% 27.51%
255.vortex 66.06% 3.03% 0.61% 2.42% 0.00% 15.15% 0.00% 12.73%
256.bzip2 54.67% 0.00% 0.93% 0.00% 0.00% 12.15% 1.40% 30.84%
300.twolf 40.21% 0.00% 0.00% 0.00% 0.00% 5.35% 0.00% 54.45%
Average 51.54% 0.34% 0.47% 0.55% 0.04% 9.32% 0.25% 37.53%

CFP2000
168.wupwise 80.20% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 19.80%
171.swim 96.30% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 3.70%
172.mgrid 84.06% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 15.94%
173.applu 94.77% 0.00% 0.00% 0.00% 0.00% 1.31% 0.00% 3.92%
177.mesa 79.57% 0.00% 0.30% 0.00% 0.00% 12.73% 0.00% 7.40%
179.art 73.12% 0.00% 0.00% 0.00% 0.00% 4.30% 0.00% 22.58%
183.equake 81.25% 0.00% 0.00% 2.08% 1.04% 3.12% 0.00% 13.54%
187.facerec 86.92% 0.00% 0.42% 0.00% 0.00% 2.53% 0.00% 10.13%
188.ammp 59.89% 0.00% 0.00% 2.54% 0.00% 3.95% 0.00% 33.62%
189.lucas 87.68% 0.00% 1.48% 0.00% 0.00% 1.97% 0.99% 7.88%
200.sixtrack 83.87% 0.00% 2.15% 2.15% 0.00% 1.08% 1.08% 9.68%
Average 82.51% 0.00% 0.40% 0.62% 0.09% 2.82% 0.19% 13.47%

cyclic IVs. In some cases cyclic IVs can be represented by geometric se-
quences [9,11], but most cyclic forms represent special functions (e.g. the
Fibonacci sequence is such an example). Some cyclic forms can be degen-
erated into monotonic sequences, by replacing a variable’s update with an
unknown [19].

Conditional induction variables are represented by the CR {[a, b], �, s}, where
s is a nested bounded CR form and � can be +, ∗, or #. Variable offset in
Figure 8(f) is bounded by the CR sequence range [0, {0, +, 1}].

Unknown variables have unknown initial values or unknown update values.
These unknown are typically function returns, updates with (unbounded)
symbolic variables, or bit-operator recurrences. Some of these are identified
as monotonic. For example, an IV with initial value 0 and a “random” pos-
itive stride function has a CR {0, +, �}, where the stride is represented by
the lattice value �.

Table 1 shows the experimental results of all induction variables categorized
in SPEC20003 with our algorithm. The first column in the table names the
benchmark. The columns labeled ”Linear”, ”Polynomial”, ”Geometric”, ”OSV”,
”Cyclic”, ”Conditional”, ”Mix” and ”Unknown” show the percentage of each
loop-variant variable category as a percentage of the total number of loop-variant
variables in each benchmark.

From the results of Table 1 the percentage of conditional induction variables
ranges from 5.22% to 15.15% in CINT2000, with 9.32% on average. None of these
3 Three CINT2000 and three CFP2000 benchmarks results are not listed because of

GCC 4.1-specific compilation errors that are not related to our implementation.

336 Y. Shou, R. van Engelen, and J. Birch

are detected by GCC as well as other compilers, such as Open64 and Polaris [7]
(Polaris uses advanced nonlinear IV recognition algorithms [13]). Our algorithm
also identifies all polynomial, geometric, mix, cyclic and wrap-around induction
variables. None of these are currently detected by GCC implementations.

To evaluate the execution time performance of our CR implementation in
GCC, we measured the compilation time of CR construction for the SPEC2000
benchmarks. CR construction accounts for 1.75% percent of the compilation
time of GCC in average. The additional time is less than one second for most
benchmarks. This shows that the performance of our algorithm is quite good.

5 Conclusion

This paper presented a linear-time loop-variant variable analysis algorithm that
effectively analyzes flow-sensitive variables that are conditionally updated. We
believe that the strength of our algorithm lies in its ability to analyze nonlinear
and non-closed index expressions in the loop nests with higher accuracy than
pure monotonic analysis. This benefits many compiler optimizations, such as
loop restructuring and loop parallelizing transformations that require accurate
data dependence analysis.

The experimental results of our algorithm applied to the SPEC2000 bench-
marks shows that a high percentage of flow-sensitive variables are detected and
accurately analyzed requiring only a small fraction of the total compilation time
(1.75%). The result is a more comprehensive classifications of variables, includ-
ing additional linear, polynomial, geometric, and wrap-around variables when
these are conditionally updated.

References

1. Aho, A., Sethi, R., Ullman, J.: Compilers: Principles, Techniques and Tools.
Addison-Wesley Publishing Company, Reading (1985)

2. Allen, R., Kennedy, K.: Optimizing Compilers for Modern Architectures. Morgan
Kaufmann, San Francisco (2002)

3. Andrade, D., Arenaz, M., Fraguela, B., no, J.T., Doallo, R.: Automated and accu-
rate cache behavior analysis for codes with irregular access patterns. In: Concur-
rency and Computation: Practice and Experience (to appear, 2007)

4. Bachmann, O.: Chains of Recurrences. PhD thesis, Kent State University, College
of Arts and Sciences (1996)

5. Berlin, D., Edelsohn, D., Pop, S.: High-level loop optimizations for GCC. In: Pro-
ceedings of the 2004 GCC Developers’ Summit, pp. 37–54 (2004)

6. Birch, J., van Engelen, R., Gallivan, K., Shou, Y.: An empirical evaluation of chains
of recurrences for array dependence testing. In: PACT 2006: Proceedings of the 15th
international conference on Parallel architectures and compilation techniques, pp.
295–304. ACM Press, New York (2006)

7. Blume, W., Doallo, R., Eigenmann, R., Grout, J., Hoeflinger, J., Lawrence, T.,
Lee, J., Padua, D., Paek, Y., Pottenger, B., Rauchwerger, L., Tu, P.: Advanced
program restructuring for high-performance computers with Polaris. IEEE Com-
puter 29(12), 78–82 (1996)

Flow-Sensitive Loop-Variant Variable Classification in Linear Time 337

8. Franke, B., O’Boyle, M.: Array recovery and high-level transformations for dsp
applications. ACM Transactions on Embedded Computing Systems (TECS) 2(2),
132–162 (2003)

9. Gerlek, M., Stolz, E., Wolfe, M.: Beyond induction variables: Detecting and classi-
fying sequences using a demand-driven SSA form. ACM Transactions on Program-
ming Languages and Systems (TOPLAS) 17(1), 85–122 (1995)

10. Gupta, R.: A fresh look at optimizing array bound checking. SIGPLAN Not. 25(6),
272–282 (1990)

11. Haghighat, M.R., Polychronopoulos, C.D.: Symbolic analysis for parallelizing com-
pilers. ACM Transactions on Programming Languages and Systems 18(4), 477–518
(1996)

12. Muchnick, S.: Advanced Compiler Design and Implementation. Morgan Kaufmann,
San Fransisco (1997)

13. Pottenger, W., Eigenmann, R.: Parallelization in the presence of generalized in-
duction and reduction variables. Technical report, 1396, Univ. of Illinois at Urbana
Champaign, Center for Supercomputing Research & Development (1995)

14. Shou, Y., van Engelen, R., Birch, J.: Flow-sensitive loop-variant variable classifica-
tion in linear time. Technical report, TR-071005, Computer Science Dept., Florida
State University (2007)

15. Shou, Y., van Engelen, R., Birch, J., Gallivan, K.: Toward efficient flow-sensitive
induction variable analysis and dependence testing for loop optimization. In: Pro-
ceedings of the ACM SouthEast Conference, pp. 1–6 (2006)

16. Tarjan, R.: Depth first search and linear graph algorithms. SIAM Journal of Com-
puting 1(2), 146–160 (1972)

17. van Engelen, R.: Symbolic evaluation of chains of recurrences for loop optimization.
Technical report, TR-000102, Computer Science Dept., Florida State University
(2000)

18. van Engelen, R.: Efficient symbolic analysis for optimizing compilers. In: Wilhelm,
R. (ed.) CC 2001. LNCS, vol. 2027, pp. 118–132. Springer, Heidelberg (2001)

19. van Engelen, R.: The CR# algebra and its application in loop analysis and op-
timization. Technical report, TR-041223, Computer Science Dept., Florida State
University (2004)

20. van Engelen, R., Birch, J., Shou, Y., Walsh, B., Gallivan, K.: A unified framework
for nonlinear dependence testing and symbolic analysis. In: Proceedings of the
ACM International Conference on Supercomputing (ICS), pp. 106–115 (2004)

21. van Engelen, R., Gallivan, K.: An efficient algorithm for pointer-to-array access
conversion for compiling and optimizing DSP applications. In: Proceedings of the
International Workshop on Innovative Architectures for Future Generation High-
Performance Processors and Systems (IWIA) 2001, Maui, Hawaii, pp. 80–89 (2001)

22. Wolfe, M.: Beyond induction variables. In: ACM SIGPLAN 1992 Conf. on Pro-
gramming Language Design and Implementation, San Fransisco, CA, pp. 162–174
(1992)

23. Wolfe, M.: High Performance Compilers for Parallel Computers. Addison-Wesley,
Redwood City (1996)

24. Wu, P., Cohen, A., Hoeflinger, J., Padua, D.: Monotonic evolution: An alternative
to induction variable substitution for dependence analysis. In: Proceedings of the
ACM International Conference on Supercomputing (ICS), pp. 78–91 (2001)

25. Zima, E.: Recurrent relations and speed-up of computations using computer alge-
bra systems. In: Fitch, J. (ed.) DISCO 1992. LNCS, vol. 721, pp. 152–161. Springer,
Heidelberg (1993)

Using ZBDDs in Points-to Analysis

Ondřej Lhoták1, Stephen Curial2, and José Nelson Amaral2

1 D.R. Cheriton School of Computer Science, University of Waterloo
2 Department of Computing Science, University of Alberta

Abstract. Binary Decision Diagrams (BDDs) have recently become
widely accepted as a space-efficient method of representing relations in
points-to analyses. When BDDs are used to represent relations, each
element of a domain is assigned a bit pattern to represent it, but not
every bit pattern represents an element. The circuit design, model check-
ing, and verification communities have achieved significant reductions in
BDD sizes using Zero-Suppressed BDDs (ZBDDs) to avoid the overhead
of these don’t-care bit patterns. We adapt BDD-based program analyses
to use ZBDDs instead of BDDs. Our experimental evaluation studies the
space requirements of ZBDDs for both context-insensitive and context-
sensitive program analyses and shows that ZBDDs can greatly reduce
the space requirements for expensive context-sensitive points-to analy-
sis. Using ZBDDs to reduce the size of the relations allows a compiler
or other software analysis tools to analyze larger programs with greater
precision. We also provide a metric that can be used to estimate whether
ZBDDs will be more compact than BDDs for a given analysis.

1 Introduction

This paper describes improvements to Binary-Decision-Diagram-based imple-
mentations of pointer analysis used in ahead-of-time compilation and program
analysis frameworks. The main benefit of BDDs [3] in program analysis is a re-
duction in the memory requirements of otherwise infeasible analyses: BDDs yield
scalable highly context-sensitive may-point-to and call-graph-construction anal-
yses [2,12,27,30,29]. The improvements presented in this paper further reduce
the storage requirements, thus enabling more precise variations of the analysis
to be computed for larger programs.

When various context-sensitive pointer analyses, such as that of Whaley and
Lam [27] and object-sensitive analysis [16,17,18], were applied to object-oriented
programs such as javac, soot, and the DaCapo benchmarks, the more precise
variations (especially 3-object-sensitive, 1H-call-site sensitive, and Whaley/Lam)
failed to complete due to memory limitations [13]. Although the running time
of the most expensive analyses in [13] was several hours, none of the infeasible
analyses failed to complete due to lack of time; they all failed due to excessive
space requirements. A more compact BDD representation lowers the memory
requirements of these analyses and allows them to scale to larger programs.

A BDD is a data structure representing a function that maps a vector of
bits (the BDD variables) to a boolean value. When BDDs are used for program

V. Adve, M.J. Garzarán, and P. Petersen (Eds.): LCPC 2007, LNCS 5234, pp. 338–352, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Using ZBDDs in Points-to Analysis 339

analysis, each element of the analysis is represented using some bit pattern. In
general, however, not every bit pattern corresponds to an element, and these
don’t-care bit patterns unnecessarily increase BDD size.

A variation of BDDs, known as Zero-Suppressed BDDs (ZBDDs), are a
promising alternative to eliminate the overhead of don’t-care bit patterns [19,23].
ZBDDs have been very effective at reducing BDD size in applications such as cir-
cuit design, model checking, and verification. Like these applications, program
analyses use BDDs to represent and manipulate sets of elements chosen from
a domain. Therefore, it is reasonable to expect these techniques to also reduce
BDD size in program analysis. However, up to now there has been no description
or evaluation of the use of ZBDDs in program analysis.

The main contributions of this paper are:

– A ZBDD representation of relations, and an algorithm, based on ZBDD
multiplication, to compute the relational product on this representation. The
combination of this representation and this algorithm makes it possible to
use ZBDDs in relation-based program analysis.

– A ZBDD variation of the BDD-based points-to analysis of Berndl et al. [2].
– An empirical study of the space requirements of the ZBDD encodings of the

relations in Berndl et al.’s analysis, Whaley and Lam’s joeq/bddbddb [27],
and Lhoták and Hendren’s Paddle framework [10,13].

– A relation-density metric that predicts whether a relation will be represented
more compactly by a BDD or by a ZBDD.

The number of ZBDD variables used to represent a relation is the sum of
the sizes of the domains of the relation. In analyses expressed using relational
operations, the domains are sets of syntactic entities (such as statements, vari-
ables, etc.) of the program being analyzed, so this sum is linear in the size of the
input. However, the context-sensitive call-graph specialization algorithm used in
joeq/bddbddb [27] uses a special BDD operation with no relational equivalent
to construct a single domain whose size is exponential in the size of the input. It
is unlikely that an analogous operation can be practical for ZBDDs because it
would have to construct a ZBDD over an exponential number of variables. Thus,
we do not propose a ZBDD analogue of the joeq/bddbddb algorithm. However,
other algorithms that use only relational operations and represent contexts as re-
lations of syntactic entities can be implemented with our ZBDD representation.
This includes the context-sensitive analyses in Paddle.

The rest of the paper is organized as follows. Section 2 gives background on
pointer analysis, BDDs, and ZBDDs. Section 3 describes how ZBDDs can be
used for program analysis. Section 4 compares the sizes of BDDs and ZBDDs
used in pointer analysis. Section 5 reviews related work, and Section 6 concludes.

2 Background

A pointer analysis computes a static abstraction of the run-time relationships
between pointers and their targets [6,8]. For each static abstraction of a pointer

340 O. Lhoták, S. Curial, and J.N. Amaral

f(x1 x2 x3) =

000 0

001 1

010 1

011 0

100 1

101 0

110 0

111 0

x1

1 0

x3

x2x2

x3x3x3

x1

1 0

x3

x2x2

x3

(a) (b) (c)

Fig. 1. The function f(x1 x2 x3) (a), and the OBDD (b) and ROBDD (c) representing
it. Solid edges represent 1-edges and dotted edges represent 0-edges.

variable, a points-to analysis computes a points-to set of the abstract target
locations to which the variable points at run time. This work focuses on may-
point-to information and on subset-based analysis. The result of a may-point-to
analysis over-approximates the run-time relationships. In a subset-based analy-
sis, also called Andersen-style analysis, points-to sets are computed by solving a
collection of subset constraints [1]. Subset constraints are often solved by prop-
agation. For example, the constraint A ⊆ B can be satisfied by propagating the
contents of A into B. Such propagation is done repeatedly for all the constraints
in the system until a fixed-point solution satisfying all the constraints is reached.

A key difficulty is that the points-to sets can become very large, especially
when precise abstractions of the run-time behavior are used. Recent research
focus on efficient data structures and propagation algorithms. A BDD [3] is one
such data structure [2,29].

2.1 BDDs

A BDD represents a function that maps vectors of bits (the BDD variables) to
boolean values. This function can be viewed as the set of bit vectors that the
function maps to true. A BDD is a directed acyclic graph where a terminal node
represents true and another terminal node represents false. Each non-terminal
node, which specifies a BDD variable, has two outgoing edges to other nodes, a
one edge and a zero edge. The value of the function for a given valuation of the
BDD variables is determined by a traversal starting at the root node. At each
node, the traversal follows either the one edge or the zero edge, depending on
the value of the BDD variable associated with that node. The function has the
value of the terminal node reached by the traversal.

An Ordered BDD (OBDD) is a BDD with a fixed variable ordering. Every
path through an OBDD evaluates the variables in the given order. An OBDD
can be reduced to remove redundant nodes, by following two reduction rules:

Using ZBDDs in Points-to Analysis 341

1. When two BDD nodes p and q are identical, edges leading to q are changed
to lead to p, and q is eliminated from the BDD.

2. A BDD node p whose one-edge and zero-edge both lead to the same node q
is eliminated from the BDD and the edges leading to p are redirected to q.

For any given function, the resulting Reduced Ordered BDD (ROBDD) is
unique. Figure 1 shows an example function, an OBDD, and the ROBDD rep-
resenting it. In practice, BDDs are always maintained in reduced ordered form.
The remainder of this paper uses the abbreviation BDD to mean ROBDD.

In the BDD representation of a set, each element of each domain is encoded
as a binary string. This encoding ideally uses the minimum number of bits
required to assign each element to a unique binary string. A relation is formed
by two or more attributes. Each attribute belongs to a domain and thus has a
binary string representation. A relation can be represented as a set of binary
strings by concatenating the binary encoding of each attribute. For example,
assume a domain D with elements {a, b, c} encoded as {00, 01, 10}, respectively,
and a relation R that has 2 attributes R1 ∈ D and R2 ∈ D. If R contains
the tuples 〈a, a〉, 〈a, b〉 and 〈c, b〉, then R can be represented by the set S =
{0000, 0001, 1001}. The BDD encoding of S evaluates to true for the strings in
S and false for the strings not in S.

2.2 Solving Subset Constraints Using BDDs

Berndl et al. [2] and Zhu [29] show how to solve points-to subset constraints using
BDDs. They encode both the points-to sets and subset constraints as relations
represented with BDDs. Propagation is performed using the relational-product
BDD operation. For example, consider a program with pointers p and q and
abstract objects X and Y , with initial points-to sets pt(p) = {X} and pt(q) =
{Y }, and a subset constraint pt(p) ⊆ pt(q). The relationships between pointers
and abstract objects in this program are represented as a points-to relation
{〈X, p〉, 〈Y, q〉} and a constraint relation {〈p, q〉}. The result of propagating the
original points-to sets along the constraint (which adds X to pt(q)) is computed
by finding the relational product of the two relations (which evaluates to the
relation {〈X, q〉}).

2.3 ZBDDs

Zero-suppressed binary decision diagrams (ZBDDs) are like BDDs (see Sec-
tion 2.1), but the second reduction rule is changed to:

2. A BDD node p whose one-edge leads to the zero terminal node and whose
zero-edge leads to a node q is removed from the BDD and the edges leading
to p are redirected to q.

Because of the difference in the reduction rules, the interpretation of a ZBDD
is slightly different than a BDD. To determine the value of the function for
a given valuation of the ZBDD variables, the ZBDD is traversed like a BDD,

342 O. Lhoták, S. Curial, and J.N. Amaral

x1

1 0

x2

x3

Fig. 2. ZBDD representation
of the function from Figure 1

following either the one or zero edge of each node
depending on the value of the variable tested by
the corresponding node. However, the final value
is true only if the traversal ends at the true termi-
nal node and every variable whose value is 1 has
been tested during the traversal. Otherwise, the fi-
nal value is false. For example, the function that
was presented in Figure 1(a) is represented by the
ZBDD in Figure 2. For instance, according to the
ZBDD interpretation, the bit pattern 011 maps to
false because the true terminal is reached with-
out testing variable x3. Because of the difference
in reduction rules, ZBDDs can represent some functions more compactly than
BDDs, and vice versa.

3 Encoding Relations in ZBDDs

In a one-of-N encoding, the number of bits used is equal to the size of the domain.
Each element is associated with one bit in the vector. Each element is represented
by a bit vector with 1 for the corresponding element and 0 elsewhere. ZBDDs
are particularly suited to manipulate sets encoded using a one-of-N encoding.
According to Meinel and Theobald [15, p. 224], ZBDDs compactly encode sets
of bit vectors that are sparse in the sense that: (i) the set contains only a small
number of bit vectors relative to the number of all possible combinations of n
bits; and (ii) each bit vector in the set contains few one bits.

The first condition holds in many practical problems involving sets. The
second condition is a consequence of the one-of-N encoding. ZBDDs are more
efficient than BDDs in many set-based applications, such as combinatorial prob-
lems [20], problems in graph theory [4], and traversal of Petri nets [28]. Since
points-to analysis also requires manipulation of (points-to) sets, ZBDDs should
also work well for points-to analysis.

Although one-of-N encodings implemented using ZBDDs have been used suc-
cessfully in problems involving sets, relatively little attention has been paid to
encoding relations. A relation is a subset of a cross product of its attributes.
The size of this universal set is the product of the sizes of the attribute domains,
which can be very large. Encoding a relation in a ZBDD as a subset of this
universal set is not practical because the number of bits required is equal to the
size of the universal set. Yoneda et al. come close to manipulating relations in
ZBDDs [28]. Although they do not represent relations explicitly, they define new
ZBDD operations that have the effect of applying a transition relation to a set
of Petri-net states encoded in a ZBDD.

We propose a new technique to represent a relation in a ZBDD: allocate
one bit for each element of every attribute domain. Thus, the number of bits
required is the sum, rather than the product, of the sizes of the attribute domains.
A tuple containing one element from each attribute is represented as a set of

Using ZBDDs in Points-to Analysis 343

those elements. For example, suppose a domain D with elements {a, b, c}, and a
relation R with two attributes R1 and R2 with domain D. Encode this relation
as a ZBDD on six bits, namely a1, b1, c1, a2, b2, c2, where the bits with subscript
1 represent elements in attribute 1, and the bits with subscript 2 represent
elements in attribute 2. Then the tuples 〈a, a〉, 〈a, b〉 and 〈c, b〉 are represented
by the sets {a1, a2}, {a1, b2}, and {c1, b2}, and encoded with the binary strings
100100, 100010, and 001010, respectively.

This representation encodes each tuple as a bit vector. Therefore the stan-
dard ZBDD set operations defined on sets of bit vectors (union, intersection,
difference) implement the corresponding operations on the relations. The replace
operation can be implemented on ZBDDs in the same way as on BDDs.

The relational product operation is central to relation-based points-to analy-
sis. To our knowledge, there is no practical algorithm to compute the relational
product in ZBDDs. In BDDs a relational product is a conjunction followed by an
existential quantification — implementations combine them into a single, more
efficient, operation. In ZBDDs, the analogue of the conjunction is a multipli-
cation followed by removal of tuples containing more than one element of the
attribute being compared.

For instance, the example from Section 2.2. has points-to relation {〈p, X〉,
〈q, Y 〉} and subset constraints relation {〈p, q〉}. These relations can be repre-
sented using ZBDDs with bits X, Y, p, q, p′, q′, where the primed bits represent
elements in the second attribute of the relation. The points-to relation is repre-
sented by a ZBDD for the set of subsets {Xp, Y q}, and the subset constraints
relation is represented by {pq′}. The product of these ZBDDs is {Xpq′, Y qpq′}.
The second tuple is removed because it contains two elements (p and q) from the
attribute being compared. Finally, the equivalent of an existential quantification
removes the p from Xpq′, yielding the correct final result {Xq′}.

Although an algorithm for ZBDD multiplication is given by Minato [21, p. 75],
there are two other operations for which algorithms have not been designed:
(1) removal of tuples with multiple elements from the same attribute; and (2)
existential quantification. We present a modification of the ZBDD multiplication
algorithm (see Figure 3) that performs all three operations in a single pass
through the ZBDD. ZRelProd takes an additional parameter pd, the set of
ZBDD variables representing the relation attributes being compared. Let x be
the variable tested by the top node of the operand ZBDDs. When x is not in pd,
line 14 performs the standard multiplication.1 However, when x is in pd, line 12
returns the union of two relational products: the product of the 0-cofactors with
respect to x and the product of the 1-cofactors with respect to x. This result
contains exactly those tuples in which the value of x is equal in both operands.
Tuples in which the value of x is zero appear in the 0-cofactors, and those in
which x is one appear in the 1-cofactors. ZRelProd combines into a single
step the ZBDD multiplication, the removal of tuples with multiple elements

1 Compared to Minato’s ZBDD multiplication algorithm, line 14 lacks the terms p1∗q1
and p0 ∗ q1. This is a relational-product behaviour-preserving optimization: when x
is not in pd but it is tested by p, it cannot also be tested by q, so q0 = q and q1 = 0.

344 O. Lhoták, S. Curial, and J.N. Amaral

ZBDD ZRelProd(ZBDD p, ZBDD q, Set〈Variable〉 pd)
1 if p.top < q.top
2 then return ZRelProd(q, p, pd)
3 if q = 0
4 then return 0
5 if q = 1
6 then return Subset0(p, pd)
7 x ← p.top
8 (p0, p1) ← factors of p by x
9 if x ∈ pd

10 then
11 (q0, q1) ← factors of q by x
12 return ZRelProd(p1, q1, pd) + ZRelProd(p0, q0, pd)
13 else
14 return x · ZRelProd(p1, q, pd) + ZRelProd(p0, q, pd)

Fig. 3. The Relational Product Algorithm for ZBDDs

from the same attribute, and the computation of the existential quantification.
The following theorem shows its correctness.

Theorem 1. Let V = {v1 . . . vn} be a set of ZBDD variables, ordered such
that if a ZBDD node testing vi is a child of a ZBDD node testing vj , then
i < j (i.e. v1 is closest to the terminal nodes). Partition V into three disjoint
subsets V1, V2, V3 representing the domains unique to the left-hand-side relation,
the domains common to both relations, and the domains unique to the right-
hand-side relation. Let P ⊆ P(V1 ∪ V2) and Q ⊆ P(V2 ∪ V3) be arbitrary sets of
subsets of V1 ∪ V2 and V2 ∪ V3 represented as ZBDDs. Define

P × Q = {s1 ∪ s3 : ∃s2 ⊆ V2.s1 ∪ s2 ∈ P ∧ s2 ∪ s3 ∈ Q ∧ (s1 ∪ s3) ∩ V2 = ∅}

Then ZRelProd(P, Q, V2) = P × Q. That is, ZRelProd correctly computes
the relational product of the relations represented by P and Q.

Proof. Define k(P) = max{i : vi ∈ S ∧ S ∈ P}, with k(P) = 0 when P is the
empty set or contains only the empty set. Then the top (root) node of the ZBDD
representing P tests variable vk(P), since a node that tests vk(P) must appear
in the ZBDD in order for vk(P) to appear in a set in P , and the maximality
of k(P) ensures that this node is at the top of the ZBDD. Define operations
s0(P, vi) = {S : S ∈ P ∧ vi �∈ S} and s1(P, vi) = {S \ {vi} : S ∈ P ∧ vi ∈ S},
which partition P into those sets that do not contain vi and those that do, and
remove vi from each set in the latter partition. The cofactor ZBDD operation
computes s0 and s1.

The proof is by induction on K = max{k(P), k(Q)}. In the base case, k(P) =
k(Q) = 0, so Q is either the empty set or contains only the empty set. When
Q = ∅, P ×Q = ∅, and line 4 correctly returns the ZBDD representing the empty
set. When Q is the set containing the empty set, P × Q is the set of sets from

Using ZBDDs in Points-to Analysis 345

P not containing any elements of V2. The Subset0 ZBDD operation computes
this set in Line 6.

In the inductive case, if k(P) < k(Q), the algorithm switches P and Q; since
× is symmetric, we need only consider the case when k(P) ≥ k(Q), so K = k(P).
When k(Q) = 0, the same argument as for the base case applies. Thus, consider
the case when k(Q) > 0, so line 7 of the algorithm is reached. There are two
cases to consider: either vk(P) ∈ V1 or vk(P) ∈ V2.

Case 1: vk(P) ∈ V1: Partition P × Q into R1 = {s ∈ P × Q : vk(P) ∈ s} and
R0 = {s ∈ P ×Q : vk(P) �∈ s}. Define vk(P) ·X = {S∪{vk(P)} : S ∈ X}. From the
definition of ×, s0(P, vk(P))×Q = R0, and vk(P) · (s1(P, vk(P))×Q) = R1. Since
vk(P) �∈ V2, the condition in line 9 fails and line 14 is executed. By the definition
of the cofactor operation, neither p0 nor p1 contains any sets containing vk(P),
so k(p0) < k(P) = K and k(p1) < k(P) = K. Since no set in Q contains an
element of V1, k(Q) < k(P) = K. Thus, the inductive hypothesis can be applied
to the relational products in line 14 to show that they compute s1(P, vk(P))×Q
and s0(P, vk(P))×Q, respectively. Adding vk(P) (i.e. x) to each set in the former
and taking their union, as done in line 14, gives R1 ∪ R0 = P × Q as required.

Case 2: vk(P) ∈ V2: In the definition of ×, for each element of P × Q, there
must exist some s2. Partition P ×Q into R1 containing those elements for which
vk(P) ∈ s2, and R0 containing those elements for which vk(P) �∈ s2. From the
definition of ×, s1(P, vk(P))×s1(Q, vk(P)) = R1 and s0(P, vk(P))×s0(Q, vk(P)) =
R0. Since vk(P) ∈ V2, the condition in line 9 succeeds and lines 11 and 12 are
executed. Again, by the definition of the cofactor operation, k(p0), k(p1), k(q0),
and k(q1) are all strictly less than k(P) = K, so the inductive hypothesis can
be applied to show that the relational products in line 12 correctly compute
s1(P, vk(P)) × s1(Q, vk(P)) and s0(P, vk(P)) × s0(Q, vk(P)). Line 12 returns their
union, which is R1 ∪ R0 = P × Q as required. ��

One other issue with ZBDDs is that the set-complement operation cannot be per-
formed efficiently because the complement of a sparse set is no longer sparse. The
BDD-based points-to analyses of Berndl et al. [2] and of Whaley and Lam [27]
do not use set complement. The Paddle framework [10] uses set complement
for convenience (in cases where it is more natural to write R1 ∩ R2 instead of
R1 \ R2) but not in essential ways. Paddle could be restructured to avoid using
set complement.

4 Experimental Evaluation

The program analysis community started using BDDs to represent relations
without investigating whether a variant representation could be more compact.
The experiments presented in this section test whether ZBDDs are a better
choice of data structure for program analyses.

The results indicate that ZBDDs are consistently more space efficient than
BDDs for relations in context-sensitive points-to analyses, but yield little im-
provement for the dense relations found in context-insensitive points-to analyses.

346 O. Lhoták, S. Curial, and J.N. Amaral

4.1 Experimental Setup

This experimental study evaluates ZBDDs in the context of three program-
analysis frameworks.

– The first framework is the context-insensitive points-to analysis developed
by Berndl et al. [2]. In this implementation, Soot [26] and its Spark points-to
analysis framework [9,11] are used to generate a system of subset constraints
to be solved. The constraints are then read in and solved by a solver written
in C using the BuDDy BDD library [14].

– The second framework is the joeq/bddbddb system of Whaley and Lam [27].
In this implementation, the joeq compiler pre-processes the code to be an-
alyzed, generates a system of subset constraints to be solved, and outputs
the initial relations as BDDs. The algorithm to solve the constraints is spec-
ified as a Datalog program. The bddbddb tool reads the Datalog program
and the initial relations, and solves the system of constraints. We evalu-
ated ZBDDs within the context-insensitive points-to analysis implemented
in joeq/bddbddb. As explained in the introduction, we did not apply ZB-
DDs to the context-sensitive analysis in joeq/bddbddb because it uses a “new
primitive” BDD operation to construct domains of exponential size [27].

– The third framework is Lhoták and Hendren’s Paddle framework [10,13].
Unlike the other two systems, Paddle integrates the BDD-based analysis into
the compiler (Soot). Paddle is implemented in the Jedd language [12], an
extension of Java for expressing program analyses in terms of relations, which
the Jedd runtime represents and manipulates using BDDs. All modifications
are confined to Jedd. Of the variations of context sensitivity supported by
Paddle, we evaluated the 1-object-sensitive analysis, which was identified
in earlier work as being precise at a modest cost, relative to other context
sensitivity variations [13].

This study uses a representative subset of the benchmarks from Lhoták and
Hendren’s study [13] of context-sensitive points-to analysis. Three (antlr, bloat,
chart) are from the Dacapo suite, version beta050224 [5], four (jack, javac,
jess, raytrace) are object-oriented programs from the SPEC JVM 98 suite [25],
and three (polyglot, sablecc, soot) are other object-oriented Java programs.
These benchmarks have been used in many previous points-to analysis studies.
All of the benchmarks are analyzed with the standard class library from the Sun
JDK 1.3.1.

Operations on BDDs and ZBDDs have the same asymptotic complexity. Pack-
ages such as BuDDy contain tuned implementations of BDD operations. We did
not perform a comparison of running time because we do not have access to
a carefully-tuned ZBDD implementation. Unlike running time, the number of
nodes is not affected by the fine tunning of the decision diagram implementation.

4.2 ZBDDs

This study compares ZBDDs to BDDs in two ways. First, we wrote a varia-
tion of the BDD-based points-to analysis implementation of Berndl et al. [2]

Using ZBDDs in Points-to Analysis 347

that represents the same relations in ZBDDs instead of BDDs. This variation
uses ZBDD operations, including the relational-product operation presented in
Section 3, instead of BDD operations to manipulate relations. Second, we instru-
mented Paddle [10,13] and joeq/bddbddb [27] to dump the relations computed
during the analysis. Then we developed a tool to read these relations into both a
BDD and a ZBDD. This infrastructure allows for the comparison of the number
of nodes in each BDD with the number of nodes in the corresponding ZBDD
representing the same relation.

A fair comparison must use an appropriate ordering of the variables in the
BDD and ZBDD because the size of these representations can vary significantly
depending on the choice of ordering. Berndl et al. found that requiring that all
the bits representing a given attribute be grouped together consecutively in the
ordering is a suitable restriction for BDD-based program analyses [2]. Thus, for
each relation, we searched exhaustively for the BDD ordering that obeys this
restriction and produces the smallest BDD: for a relation with n attributes, we
evaluated the n! possible orderings of the attributes. The ordering found by this
exhaustive search on a representative benchmark (antlr) was applied to the
corresponding relations in the analysis of all the benchmarks.

Since the BDD and ZBDD representations of a relation are defined in terms
of different sets of bits, an appropriate ZBDD variable ordering that corresponds
to a given BDD variable ordering must be selected. To be consistent with BDD
orderings and to limit the search space of possible orderings, the restriction
that the bits representing a given attribute be grouped together consecutively is
also maintained for ZBDD orderings. Given this restriction, the only choice re-
maining is the relative ordering of different attributes. It turns out that for
most of the relations examined, the best BDD variable ordering is also the
best ZBDD ordering. For all but one relation, using the best BDD ordering for
the ZBDD results in a ZBDD no more than 5% larger than the ZBDD with the
best ZBDD ordering.

The resolvedSpecials relation in Paddle is an interesting outlier. Using the
best BDD ordering results in a ZBDD 76% larger than the ZBDD with the best
ZBDD ordering. However, when the best ZBDD ordering is applied to BDDs
it yields only 7% more nodes than the best BDD ordering. We will continue to
study such outliers for more insights on BDD and ZBDD orderings. However, for
the most part, good BDD orderings tend to also be good ZBDD orderings. The
experiments reported in the remainder of this paper use the best BDD ordering
for both BDDs and ZBDDs. Therefore, the results are slightly biased in favour
of BDDs.

The graphs in Figure 4 show the relative size of the BDD and ZBDD for each
relation of each benchmark. Points below the diagonal line represent relations
for which the ZBDD is smaller than the BDD. Points above the line represent
relations for which the BDD is smaller. Larger decision diagrams, which affect
analysis cost more significantly, appear to the right and top of each graph. Note
that the three graphs in Figure 4 have different scales.

348 O. Lhoták, S. Curial, and J.N. Amaral

 1000

 10000

 100000

 1e+06

 1000 10000 100000 1e+06

Z
B

D
D

 n
od

es

BDD nodes

2 attributes
3 attributes

 1000

 10000

 100000

 1000 10000 100000

Z
B

D
D

 n
od

es

BDD nodes

2 attributes
3 attributes

(a) Berndl et al. (b) joeq/bddbddb

 10000

 100000

 1e+06

 10000 100000 1e+06

Z
B

D
D

 n
od

es

BDD nodes

4 attributes
5 attributes
6 attributes
7 attributes

(c) Paddle

Fig. 4. BDD size compared to ZBDD size

In the Berndl et al. analysis, although most relations are represented more ef-
ficiently by ZBDDs than BDDs, the reverse is true for a significant number of re-
lations, some of them large. Closer examination reveals that in every benchmark,
the relations represented more efficiently by BDDs than ZBDDs are always the
pointsTo and typeFilter relation, both of which are manipulated frequently
by the analysis. Thus, the data indicates that there is no clear advantage in
using ZBDDs over BDDs, or vice versa, for the Berndl et al. analysis.

Results for the joeq/bddbddb analysis are similar to those of the Berndl
et al. analysis. The relations for which BDDs are smaller than ZBDDs are mainly
vPfilter (the joeq/bddbddb equivalent of typeFilter), and in several bench-
marks vP (equivalent of pointsTo).

In both the Berndl et al. and joeq/bddbddb analyses, the relative size of
BDDs and ZBDDs favours ZBDDs more strongly in relations with three at-
tributes than those with two attributes. Therefore, for context-sensitive analy-
ses, which use additional attributes to represent contexts, we expected ZBDDs
to be significantly smaller than BDDs. Indeed, Figure 4(c) shows that in the

Using ZBDDs in Points-to Analysis 349

 0.1

 1

 10

 1e-10 1e-09 1e-08 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1

Z
B

D
D

 n
od

es
/B

D
D

 n
od

es

density

2 attributes
3 attributes

 0.1

 1

 10

 1e-10 1e-09 1e-08 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1

Z
B

D
D

 n
od

es
/B

D
D

 n
od

es

density

2 attributes
3 attributes

(a) Berndl et al. (b) joeq/bddbddb

 0.1

 1

 10

 1e-16 1e-15 1e-14 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08 1e-07

Z
B

D
D

 n
od

es
/B

D
D

 n
od

es

density

4 attributes
5 attributes
6 attributes
7 attributes

(c) Paddle

Fig. 5. BDD vs. ZBDD size in terms of density

Paddle context-sensitive analysis every relation in every benchmark is smaller
when represented by a ZBDD than by a BDD. The differences ranged up to a
factor of eight! However, the link with the number of attributes is less clear in the
Paddle results: (1) the BDD and ZBDD sizes for 6-attribute relations are very
close to those for 4-attribute relations; and (2) the ZBDD vs. BDD advantage is
smaller for 7-attribute relations than for a large set of 6-attribute relations.

These results indicate that for context-insensitive points-to analyses, ZBDDs
are generally smaller than BDDs, but the advantage is too small and inconsistent
to allow a general recommendation that ZBDDs be used instead of BDDs. How-
ever, for analyses using relations with more attributes, and for context-sensitive
points-to analysis in particular, we expect ZBDDs to be significantly and con-
sistently smaller than BDDs representing the same relations.

When should we use ZBDDs? Given the mixed results for points-to analyses
in the question of the size of ZBDDs vs. BDDs for the same relations, a metric
that indicates whether ZBDDs or BDDs are expected to be more compact would
be useful for the program analysis community. Such a metric could be used when
a designer is considering the use of a BDD representation for a relation-based
analysis that has not yet been implemented using BDDs.

The metric that we propose is density and it is equal to the number of tuples in
the relation divided by the size of the full domain of possible tuples. This metric

350 O. Lhoták, S. Curial, and J.N. Amaral

is inspired by Meinel and Theobald’s recommendation that ZBDDs be used for
boolean functions whose on-set (those input vectors that the function maps to
one) is small, and whose bit vectors in the on-set contain few one-bits [15]. The
density metric covers both parts of this qualitative recommendation, since the
number of tuples in a relation is equal to the total number of one-bits in all the
bit vectors in the on-set of a one-of-N encoding of the relation, multiplied by
the number of attributes. The density metric measures the density of a relation.
Thus it applies to relations independently of the ZBDD representation.

Figure 5 plots the ratio of ZBDD vs. BDD size as a function of the den-
sity metric. Points below the horizontal line represent relations whose ZBDD is
smaller than the BDD. In all three graphs, as density increases, the advantage
of ZBDDs over BDDs decreases. At a density of around 3 × 10−3, BDDs and
ZBDDs are approximately equal in size. This threshold is indicated in the graphs
by a vertical dotted line. Of all the relations that we observed, two had a den-
sity lower than this threshold but were represented more compactly by a BDD
than a ZBDD; they appear slightly to the left of and above the crossing lines
in Figure 5(b). The context-sensitive relations extracted from Paddle, which are
represented more compactly by ZBDDs than BDDs, have low densities. Because
the size of BDDs and ZBDDs strongly depends on the contents of the relation
being represented, density can only serve as a rough guide. However, we hope
it will be a useful metric for analysis designers considering ZBDDs or BDDs for
other program analyses.

5 Related Work

ZBDDs were introduced by Minato, and found to scale better than BDDs when
representing large combinatorial circuits [19]. Minato showed that ZBDDs are
likely a better choice than BDDs if there are many input variables, variables
default to 0, or very few elements in a set are asserted.

Okuno applied ZBDDs to the N -Queens problem. He reports that for this
problem, the ZBDD representation is about a factor of N smaller than the
corresponding BDD version [24, summarized in [21]].

Yoneda et al. applied ZBDDs to Petri-net state-space exploration, and com-
pared their performance to BDDs [28]. They found the ZBDD representation to
be one half to one third the size of the BDD representation. They also report
that the ZBDD implementation was several times faster for some benchmarks.

Coudert used ZBDDs to efficiently solve graph optimization and routing
problems [4].

Since then, ZBDDs have been used to efficiently solve several combinatorial
problems as well as fault simulation, logic synthesis, processing of petri nets and
manipulation of polynomial formulas [22,23].

BDDs were first applied to points-to analysis by Zhu and Berndl et al. [29,2].
These context-insensitive analyses were then generalized to context-sensitive
analysis by Zhu and Calman and by Whaley and Lam [30,27]. Hardekopf and Lin
compared several non-BDD and BDD implementations of a context-insensitive
points-to analysis [7], including a hybrid implementation in which only the

Using ZBDDs in Points-to Analysis 351

points-to sets are represented by BDDs, and the rest of the analysis uses tra-
ditional data structures. This implementation used less than one-fifth of the
memory of a non-BDD implementation. ZBDDs could be substituted for BDDs
in this implementation, possibly yielding further reductions in memory usage.

6 Conclusion

Although BDDs have been successfully used for points-to analysis, alternative
BDD representations were not evaluated by this community. This paper devel-
ops the techniques that allow the use of ZBDDs for such analyses. The new
relational-product operator described here allows for the immediate use of ZB-
DDs in points-to analysis. The experimental results indicate that non-trivial re-
duction of BDD sizes can be realized when ZBDDs are used for context-sensitive
points-to analysis.

References

1. Andersen, L.O.: Program Analysis and Specialization for the C Programming Lan-
guage. PhD thesis, DIKU, Univ. of Copenhagen (DIKU report 94/19) (May 1994)

2. Berndl, M., Lhoták, O., Qian, F., Hendren, L., Umanee, N.: Points-to analysis
using BDDs. In: Proceedings of PLDI 2003, pp. 103–114 (2003)

3. Bryant, R.E.: Symbolic boolean manipulation with ordered binary-decision dia-
grams. ACM Comput. Surv. 24(3), 293–318 (1992)

4. Coudert, O.: Solving graph optimization problems with ZBDDs. In: EDTC 1997:
Proceedings of the 1997 European Conference on Design and Test, p. 224 (1997)

5. DaCapo Project. The DaCapo benchmark suite,
http://www-ali.cs.umass.edu/DaCapo/gcbm.html

6. Emami, M., Ghiya, R., Hendren, L.J.: Context-sensitive interprocedural points-to
analysis in the presence of function pointers. In: Proceedings of PLDI 1994, pp.
242–256 (1994)

7. Hardekopf, B., Lin, C.: The ant and the grasshopper: Fast and accurate pointer
analysis for millions of lines of code. In: Proceedings of PLDI (2007)

8. Hind, M.: Pointer analysis: haven’t we solved this problem yet? In: Proceedings of
PASTE 2001, pp. 54–61. ACM Press, New York (2001)

9. Lhoták, O.: Spark: A flexible points-to analysis framework for Java. Master’s thesis,
McGill University (December 2002)

10. Lhoták, O.: Program Analysis using Binary Decision Diagrams. PhD thesis, McGill
University (January 2006)

11. Lhoták, O., Hendren, L.: Scaling Java points-to analysis using Spark. In: Hedin,
G. (ed.) CC 2003. LNCS, vol. 2622, pp. 153–169. Springer, Heidelberg (2003)

12. Lhoták, O., Hendren, L.: Jedd: a BDD-based relational extension of Java. In: Pro-
ceedings of PLDI 2004, pp. 158–169. ACM Press, New York (2004)

13. Lhoták, O., Hendren, L.: Context-sensitive points-to analysis: is it worth it? In:
Mycroft, A., Zeller, A. (eds.) CC 2006. LNCS, vol. 3923, pp. 47–64. Springer,
Heidelberg (2006)

14. Lind-Nielsen, J.: BuDDy, A Binary Decision Diagram Package,
http://www.itu.dk/research/buddy/

http://www-ali.cs.umass.edu/DaCapo/gcbm.html
http://www.itu.dk/research/buddy/

352 O. Lhoták, S. Curial, and J.N. Amaral

15. Meinel, C., Theobald, T.: Algorithms and Data Structures in VLSI Design.
Springer, New York (1998)

16. Milanova, A.: Precise and Practical Flow Analysis of Object-Oriented Software.
PhD thesis, Rutgers University (August 2003)

17. Milanova, A., Rountev, A., Ryder, B.G.: Parameterized object sensitivity for
points-to and side-effect analyses for Java. In: Proceedings of ISSTA 2002, pp.
1–11. ACM Press, New York (2002)

18. Milanova, A., Rountev, A., Ryder, B.G.: Parameterized object sensitivity for
points-to analysis for Java. ACM Trans. Softw. Eng. Methodol. 14(1), 1–41 (2005)

19. Minato, S.: Zero-suppressed BDDs for set manipulation in combinatorial problems.
In: DAC 1993: 30th International Conf. on Design Automation, pp. 272–277 (1993)

20. Minato, S.: Calculation of unate cube set algebra using zero-suppressed BDDs. In:
31st ACM/IEEE Design Automation Conference (DAC 1994), pp. 420–424 (1994)

21. Minato, S.: Binary decision diagrams and applications for VLSI CAD. Kluwer
Academic Publishers, Dordrecht (1996)

22. Minato, S.: Zero-suppressed BDDs and their applications. International Journal on
Software Tools for Technology Transfer (STTT) 3(2), 156–170 (2001)

23. Mishchenko, A.: An introduction to zero-suppressed binary decision diagrams.
Technical report, Portland State University (June 2001)

24. Okuno, H.G.: Reducing combinatorial explosions in solving search-type combina-
torial problems with binary decision diagrams. Trans. of Information Processing
Society of Japan (IPSJ) (in Japanese) 35(5), 739–753 (1994)

25. Standard Performance Evaluation Corporation. SPEC JVM98 benchmarks (1998),
http://www.spec.org/osg/jvm98/

26. Vallée-Rai, R., Gagnon, E., Hendren, L.J., Lam, P., Pominville, P., Sundaresan,
V.: Optimizing Java bytecode using the Soot framework: Is it feasible? In: Watt,
D.A. (ed.) CC 2000. LNCS, vol. 1781, pp. 18–34. Springer, Heidelberg (2000)

27. Whaley, J., Lam, M.S.: Cloning-based context-sensitive pointer alias analysis using
binary decision diagrams. In: Proceedings of PLDI 2004, pp. 131–144 (2004)

28. Yoneda, T., Hatori, H., Takahara, A., Minato, S.: BDDs vs. zero-suppressed BDDs:
for CTL symbolic model checking of petri nets. In: Srivas, M., Camilleri, A. (eds.)
FMCAD 1996. LNCS, vol. 1166, pp. 435–449. Springer, Heidelberg (1996)

29. Zhu, J.: Symbolic pointer analysis. In: Proceedings of the 2002 IEEE/ACM Inter-
national Conference on Computer-Aided Design, pp. 150–157 (2002)

30. Zhu, J., Calman, S.: Symbolic pointer analysis revisited. In: Proceedings of PLDI
2004, pp. 145–157 (2004)

http://www.spec.org/osg/jvm98/

Author Index

Almasi, George 47
Amaral, José Nelson 47, 338
Amato, Nancy M. 156
Anderson, Todd 141
Ayguadé, Eduard 63
Ayguade, Eduard 125

Balart, Jairo 125
Barthou, D. 308
Barton, Christopher 47
Bianco, Mauro 156
Birch, Johnnie 323
Bronevetsky, Greg 1

Caşcaval, Călin 47
Charles, H.-P. 308
Chen, Tong 125
Chu, Slo-Li 261
Cornwall, Jay L.T. 172
Curial, Stephen 338

Duesterwald, Evelyn 95
Dümmler, Jörg 292
Duran, Alejandro 63

Farreras, Montse 47
Fritz, Nicolas 246

Gao, Guang R. 95
Garg, Rahul 47
Garzarán, Maŕıa Jesús 16
Gaster, Benedict R. 32
Glew, Neal 141
Gonzalez, Marc 125
Guo, Peng 141

Hickey, Neil 32
Hoeflinger, Jay 63
Hwu, Wen-mei W. 110

Kasahara, Hironori 78
Kelly, Paul H.J. 172
Khan, Minhaj Ahmad 308
Knobe, Kathleen 276

Lewis, Brian T. 141
Lhoták, Ondřej 338
Liu, Wei 141
Liu, Zhanglin 141
Lokhmotov, Anton 32
Lucas, Philipp 246

Mandviwala, Hasnain A. 276
Mao, Feng 202
Marques, Daniel 1
Martorell, Xavier 125
Massaioli, Federico 63
Mycroft, Alan 32

Nicoletti, Bruno 172

O’Brien, Kathryn 125
O’Brien, Kevin 125

Parsonage, Phil 172
Petersen, Leaf 141
Philippsen, Michael 187, 217
Pingali, Keshav 1

Rajagopalan, Mohan 141
Ramachandran, Umakishore 276
Raman, Chidambareswaran 156
Rauber, Thomas 292
Rauchwerger, Lawrence 156
Rodrigues, Christopher I. 110
Rugina, Radu 1
Rünger, Gudula 292
Ryoo, Shane 110

Sarkar, Vivek 78
Shen, Xipeng 202
Shirako, Jun 78
Shou, Yixin 323
Snir, Marc 16
Stichnoth, James M. 141
Stuttard, David 32
Su, Jimmy 232
Sura, Zehra 125

Tanase, Gabriel 156
Teruel, Xavier 63

354 Author Index

van Engelen, Robert 323

Veldema, Ronald 187, 217

Wilhelm, Reinhard 246

Wu, Gansha 141

Yelick, Katherine 232
Yu, Jing 16

Zhang, Dan 141
Zhang, Tao 125
Zhang, Yuan 95

	Title Page
	Preface
	Organization
	Table of Contents
	Compiler-Enhanced Incremental Checkpointing
	Introduction
	Compiler/Runtime Interface
	Compiler Analysis
	Basic Analysis
	Loop-Sensitive Analysis
	Inter-procedural Analysis

	Experimental Evaluation
	Experimental Setup
	Incremental Checkpointing
	Asynchronous Checkpointing

	Summary
	References

	Techniques for Efficient Software Checking
	Introduction
	Background and Baseline Software Checking
	Use of Boolean Logic to Find Outcome Tolerant Branches
	Overview
	Compiler Algorithm

	Removal of Address Checks
	Register Safe Platforms
	Evaluation
	Environmental Setup
	Static Analysis
	Performance
	Reliability

	Related Work
	Conclusion
	References

	Revisiting SIMD Programming
	Introduction
	CSX Architecture
	CSX Family
	CSX600 Processor
	Acceleration Example

	C^{n} Design Goals and Choices
	Efficiency and Portability
	C^{n} as a Language for the SIMD Array Type Architecture

	C^{n} Outline
	Types
	Expressions
	Assignment Statements
	Reduction Operations
	Control Statements
	Functions

	C^{n} Design Rationale
	Low-Level Abstraction
	C^{n} and Other SIMD Dialects of C

	C^{n} as Intermediate Language
	C^{n} Compiler Implementation
	C^{n} Compiler Performance

	Future Work and Conclusion
	References

	Multidimensional Blocking in UPC
	Introduction
	Multidimensional Blocking of UPC Arrays
	UPC Array Layout
	Multiblocked Arrays and UPC Pointer Arithmetic
	Implementation Issues

	Locality Analysis for Multi-dimensional Blocking Factors
	Identifying Local Shared Accesses
	Experimental Evaluation
	Related Work
	Conclusions and Future Work
	References

	An Experimental Evaluation of the New OpenMP Tasking Model
	Introduction
	Motivation and Related Work
	Programming with OpenMP Tasks
	Worksharing Versus Tasking
	Nested Parallelism Versus Tasking
	Almost Impossible in OpenMP 2.5

	Evaluation
	The Prototype Implementation
	Evaluation Methodology
	Results

	Suggestions for Future Work
	Conclusions
	References

	Language Extensions in Support of Compiler Parallelization
	Introduction
	Language Extensions
	Multidimensional Arrays, Regions, Points
	Array Views
	Annotations on Method Parameters
	Array and Object Privatization
	Pure Annotation for Side-Effect-Free Methods
	Pure Annotation for Side-Effect-Free Methods
	Annotations Related to Exceptions
	Gather Computations and Reductions in Loops

	Case Study: Java Grande Forum Benchmarks
	LUFact
	Euler

	Experimental Results
	Sequential and Parallel Versions of X10
	Comparison with Parallel Java Versions

	Conclusions and Future Work
	References

	Concurrency Analysis for Shared Memory Programs with Textually Unaligned Barriers
	Introduction
	Related Work
	Step 1: Control Flow Graph Construction
	Step 2: Barrier Matching
	Review of Barrier Matching for MPI Programs
	Multi-valued Expressions Analysis for OpenMP Programs
	Barrier Trees and Barrier Matching for OpenMP Programs
	Handling Structurally Incorrect Programs

	Step 3: Phase Partition and Aggregation
	Step 4: Concurrency Relation Calculation
	Experimental Evaluations
	Conclusions
	References

	Iteration Disambiguation for Parallelism Identification in Time-Sliced Applications
	Introduction
	Related Work
	Analysis
	Example
	Algorithm
	Properties and Limitations

	Experiments
	Analysis Statistics
	Object Classifications
	Analysis Results

	Conclusions and Future Work
	References

	A Novel Asynchronous Software Cache Implementation for the Cell-BE Processor
	Introduction
	Motivation
	Software Cache Implementation
	Cache Parameters
	Cache Structures
	Look up
	Write Back
	Placement / Replacement
	Communications and Synchronization
	Address Translation

	Compiler Code Generation
	Basic Runtime Services
	Code Generation
	Optimization for Strided Accesses
	Optimization for Non-strided Accesses
	Setting the Cache Line Size

	Evaluation
	Stream Benchmark
	Random Access Benchmark

	Conclusions
	References

	Pillar: A Parallel Implementation Language
	Introduction
	The Pillar Language
	Sequential Features
	Concurrency Features
	Compiler and Runtime Architecture
	The Pillar Compiler
	The Pillar Runtime
	StackWalking and Root-Set Enumeration
	Composable Cuts
	Prscalls
	Fcalls

	Experience Using Pillar
	Compiling Java to Pillar
	Compiling X10 to Pillar
	Compiling a Concurrent Functional Language

	Related Work
	Summary
	References

	Associative Parallel Containers in STAPL
	Introduction
	Related Work
	STAPL Overview
	Associative pContainers
	Associative $pContainer$ Design and Implementation
	Performance Evaluation
	Architectures Used
	Evaluation of the Associative $pContainer$ Methods
	Support for Generic Parallel Algorithms
	Sorting Using Associative $pContainers$
	Overhead of Associative $pContainers$

	Conclusion
	References

	Explicit Dependence Metadata in an Active Visual Effects Library
	Introduction
	SystemDesign
	Library Front-End
	Deriving Transformation Parameters from Metadata
	Code Generation

	Experimental Results
	Baseline Performance
	Fusion within a Single Iteration
	Fusion across Multiple Iterations
	Impact on Multicore Scalability

	Related Work
	Conclusions and Further Work
	References

	Supporting Huge Address Spaces in a Virtual Machine for Java on a Cluster
	Introduction
	LVM Implementation
	Implementing the Address Space
	DSM Support
	Object Allocation Strategies
	Reducing Thread Migrations
	Distributed Garbage Collection

	Performance
	Micro Benchmarks
	Application Benchmarks

	Related Work
	References

	Modeling Relations between Inputs and Dynamic Behavior for General Programs
	Introduction
	Program Behavior Model
	Input Formal Expression
	Extensible Input Characterization Language (XICL)

	Feature Selection
	Model Building
	Evaluation
	Methodology
	Accuracy of Behavior Prediction
	Effects on Optimizations

	Training Inputs
	Related Work
	Conclusion
	References

	Evaluation of RDMA Opportunities in an Object-Oriented DSM
	Introduction
	Related Work
	DSM Protocol Template
	Object Requests by Means of RDMA
	Processing the List(s) of Cached Objects
	Invalidation Protocol Handlers
	RDMA-Based Update Protocol Handlers

	Performance
	Conclusions
	References

	Automatic Communication Performance Debugging in PGAS Languages
	Introduction
	Motivating Example
	Background
	Titanium
	GASNet Trace
	Trend-Prof

	Bug Types
	$ti-trend-prof$
	Experimental Results
	Heart Simulation
	Adaptive Mesh Refinement

	Related Work
	Conclusion
	References

	Exploiting SIMD Parallelism with the CGiS Compiler Framework
	Introduction
	Hardware
	TheCGiS Framework
	CGiS
	Related Work

	The SIMD Back-End
	Kernel Flattening
	Loop Sectioning
	Control Flow Conversion

	Examples and Evaluation
	rc5 Encryption
	Gaussian Blur
	Mandelbrot Set

	Future Work
	Conclusion
	References

	Critical Block Scheduling: A Thread-Level Parallelizing Mechanism for a Heterogeneous Chip Multiprocessor Architecture
	Introduction
	The Processor-in-Memory Architecture
	The Octans System
	Statement Splitting and WPG Construction
	The Critical Block Scheduling Mechanism

	Experimental Results
	Conclusions
	References

	Capsules: Expressing Composable Computations in a Parallel Programming Model
	Introduction
	Reducing Run-Time Overhead
	Composing Computations Dynamically
	Software Abstractions: Step, Item, and Tag Capsules
	Reducing Synchronization Points

	Composing by Computation Space
	Serialization Order When Composing over Computation Space
	Moving Synchronization Points to Coarse-Grain Computation Boundary
	StepCapsule Space: A Software Abstraction Enabling Composition over Computation Space
	Rules for Constructing a StepCapsule

	Composition over Iteration Space
	Serialization Order When Composing over Iteration Space
	Moving Synchronization Points to Coarse-Grain Computation Boundary
	TagCapsule Space: A Software Abstraction Enabling Composition over Iteration Space
	Rules for Composition over Iteration Space
	ItemCapsule Spaces: Composed over Iteration Space

	SMP Run-Time Implementation
	Performance Evaluation and Results
	EvaluationMethodology
	Applications
	Results

	Conclusion
	References

	Communicating Multiprocessor-Tasks
	Introduction
	Programming Model of CM-Tasks
	Programming Support
	Specification Language
	Cost Model
	Transformation Framework

	Experimental Evaluation
	Related Work
	Conclusions
	References

	An Effective Automated Approach to Specialization of Code
	Introduction
	Principle of Hybrid Specialization
	Template Creation and Efficient Runtime Specialization
	Equivalence of Specialized Binaries
	Minimizing Overhead of Template Specialization

	Optimization Algorithm
	Implementation Framework and Experimentation
	Code Specialization and Object Code Analysis
	Generation of Specialized Data and Runtime Specializer
	Final Wrapper Code

	Experimental Results
	Specialization Overhead
	Related Work
	Conclusion and Future Work
	References

	Flow-Sensitive Loop-Variant Variable Classification in Linear Time
	Introduction and Related Work
	Preliminaries
	Flow-Sensitive Loop-Variant Variable Classification
	Algorithms
	Complexity
	Accuracy

	Implementation and Experimental Results
	Conclusion
	References

	Using ZBDDs in Points-to Analysis
	Introduction
	Background
	BDDs
	Solving Subset Constraints Using BDDs
	ZBDDs

	Encoding Relations in ZBDDs
	Experimental Evaluation
	Experimental Setup
	ZBDDs

	Related Work
	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

